Startseite Comprehensive analysis of a magneto-electro-elastic longitudinal wave model: symmetries, chaos, and soliton structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comprehensive analysis of a magneto-electro-elastic longitudinal wave model: symmetries, chaos, and soliton structures

  • Sonia Akram , Mati ur Rahman und Laila A. Al-Essa EMAIL logo
Veröffentlicht/Copyright: 13. Oktober 2025

Abstract

This study offers a comprehensive analysis of a modified (1 + 1)-dimensional longitudinal wave equation (LWE) tailored to explain the nonlinear dynamic structure of a magneto-electro-elastic (MEE) circular rod. The model presents the coupled interactions of electrical and magnetic fields and mechanical interactions by including physical characteristics such as stress-strain and mass density relationships, reflecting deeper insight into the propagation of longitudinal waves in MEE material. To exhibit the symmetry structure of the equation, Lie symmetry analysis approach is used, producing symmetry reductions that reduce the original partial differential equation into ordinary differential systems. Beyond the symmetry system, the dynamics of the model is methodically analyzed through different diagnostic tools, such as multistability analysis, bifurcation diagrams, power spectrum plots, heterogeneous recurrence plots, Lyapunov exponent evolution, and strange attractor representations, capturing rich chaotic dynamics and sensitive dependence on distinct initial conditions. Additionally, we create novel exact solutions of the proposing equation using two advanced symbolic techniques namely, the generalized Ansatz method and the Painlevé–Paul method to derive a wide spectrum of wave profiles, including kink, anti-kink, periodic, W-shaped, and mixed-type solutions. The importance of this work lies in its unified analysis of symmetry, chaos, and soliton theory within a physically motivated structure, inproving our understanding of nonlinear wave propagation in magneto-electro-elastic structures and providing valuable tools for modeling complex materials in applied physics and engineering contexts.


Corresponding author: Laila A. Al-Essa, Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia, E-mail: 

Funding source: Princess Nourah bint Abdulrahman University, Riyadh, Saudi ArabiaArabia

Award Identifier / Grant number: PNURSP2025R443

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R443), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R443), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  7. Data availability: Not applicable.

References

[1] X. Zhu, P. Xia, Q. He, Z. Ni, and L. Ni, “Ensemble classifier design based on perturbation binary salp swarm algorithm for classification,” Comput. Model. Eng. Sci., vol. 135, no. 1, 2023, https://doi.org/10.32604/cmes.2022.022985.Suche in Google Scholar

[2] M. A. El-Shorbagy, S. Akram, and M. ur Rahman, “Propagation of solitary wave solutions to (4 + 1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation arise in mathematical physics and stability analysis,” Partial Differ. Equ. Appl. Math., vol. 10, p. 100669, 2024, https://doi.org/10.1016/j.padiff.2024.100669.Suche in Google Scholar

[3] S. Kumar and S. Kumar Dhiman, “Exploring cone-shaped solitons, breather, and lump-forms solutions using the Lie symmetry method and unified approach to a coupled breaking soliton model,” Phys. Scr., vol. 99, no. 2, p. 025243, 2024, https://doi.org/10.1088/1402-4896/ad1d9e.Suche in Google Scholar

[4] U. Asghar, M. I. Asjad, S. Kumar, and S. A. O. Abdallah, “Dynamics of advanced soliton wave profiles in a nonlinear model with some structural behavior: chaos theory and sensitivity analysis: U. Asghar et al,” Qual. Theory Dyn. Syst., vol. 24, no. 4, p. 182, 2025, https://doi.org/10.1007/s12346-025-01344-5.Suche in Google Scholar

[5] A. Kukkar and S. Kumar, “Dynamic behavior of dark and bright solitons with analytical solutions, together with other soliton forms in the double-chain DNA model,” Mod. Phys. Lett. B, vol. 39, no. 33, p. 2550203, 2025. https://doi.org/10.1142/s0217984925502033.Suche in Google Scholar

[6] S. Kumar, S. Rani, and N. Mann, “Analytical soliton solutions to a (2 + 1)-dimensional variable coefficients graphene sheets equation using the application of Lie symmetry approach: bifurcation theory, sensitivity analysis and chaotic behavior,” Qual. Theory Dyn. Syst., vol. 24, no. 2, p. 80, 2025, https://doi.org/10.1007/s12346-025-01232-y.Suche in Google Scholar

[7] S. Kumar, N. Mann, H. Kharbanda, and M. Inc, “Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2 + 1)-dimensional Konopelchenko–Dubrovsky (KD) system,” Anal. Math. Phys., vol. 13, no. 3, p. 40, 2023, https://doi.org/10.1007/s13324-023-00802-0.Suche in Google Scholar

[8] S. Kumar, W.-X. Ma, S. Kumar Dhiman, and A. Chauhan, “Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations,” Eur. Phys. J. Plus, vol. 138, no. 5, p. 434, 2023, https://doi.org/10.1140/epjp/s13360-023-04053-7.Suche in Google Scholar

[9] S. K. Dhiman, S. Kumar, and H. Kharbanda, “An extended (3 + 1)-dimensional Jimbo–Miwa equation: symmetry reductions, invariant solutions and dynamics of different solitary waves,” Mod. Phys. Lett. B, vol. 35, no. 34, p. 2150528, 2021, https://doi.org/10.1142/s021798492150528x.Suche in Google Scholar

[10] S. Kumar and S. Rani, “Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2 + 1)-dimensional dissipative long wave system,” Phys. Scr., vol. 96, no. 12, p. 125202, 2021, https://doi.org/10.1088/1402-4896/ac1990.Suche in Google Scholar

[11] S. Akram, M. ur Rahman, and L. A. Al-Essa, “A comprehensive dynamical analysis of (2 + 1)-dimensional nonlinear electrical transmission line model with Atangana–Baleanu derivative,” Phys. Lett., vol. A, p. 130762, 2025, https://doi.org/10.1016/j.physleta.2025.130762.Suche in Google Scholar

[12] X. Zhang, X. Yang, and Q. He, “Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes,” N. Am. J. Econ. Finance, vol. 62, p. 101766, 2022, https://doi.org/10.1016/j.najef.2022.101766.Suche in Google Scholar

[13] B. Li, H. Liang, and Q. He, “Multiple and generic bifurcation analysis of a discrete Hindmarsh–Rose model,” Chaos Solitons Fractals, vol. 146, p. 110856, 2021, https://doi.org/10.1016/j.chaos.2021.110856.Suche in Google Scholar

[14] K.-J. Wang and F. Shi, “Multi-soliton solutions and soliton molecules of the (2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation for the incompressible fluid,” Europhys. Lett., vol. 145, no. 4, p. 42001, 2024, https://doi.org/10.1209/0295-5075/ad219d.Suche in Google Scholar

[15] Z. Eskandari, Z. Avazzadeh, R. K. Ghaziani, and B. Li, “Dynamics and bifurcations of a discrete-time Lotka–Volterra model using nonstandard finite difference discretization method,” Math. Methods Appl. Sci., vol. 48, no. 7, pp. 7197–7212, 2025, https://doi.org/10.1002/mma.8859.Suche in Google Scholar

[16] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, and R. Shah, “Perturbed Gerdjikov–Ivanov equation: soliton solutions via Backlund transformation,” Optik, vol. 298, p. 171576, 2024, https://doi.org/10.1016/j.ijleo.2023.171576.Suche in Google Scholar

[17] A. Refaie Ali, M. N. Alam, and M. W. Parven, “Unveiling optical soliton solutions and bifurcation analysis in the space–time fractional Fokas–Lenells equation via SSE approach,” Sci. Rep., vol. 14, no. 1, p. 2000, 2024, https://doi.org/10.1038/s41598-024-52308-9.Suche in Google Scholar PubMed PubMed Central

[18] H. H. Hussein, H. M. Ahmed, and W. Alexan, “Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan–Porsezian–Daniel equation using the modified extended tanh function method,” Ain Shams Eng. J., vol. 15, no. 3, p. 102513, 2024, https://doi.org/10.1016/j.asej.2023.102513.Suche in Google Scholar

[19] B. Mohan and S. Kumar, “Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic approach in fluids and nonlinear sciences,” Chin. J. Phys., vol. 92, pp. 10–21, 2024, https://doi.org/10.1016/j.cjph.2024.09.004.Suche in Google Scholar

[20] E. Hussain et al.., “Qualitative analysis and soliton solutions of nonlinear extended quantum Zakharov–Kuznetsov equation,” Nonlinear Dyn., vol. 112, no. 21, pp. 19295–19310, 2024, https://doi.org/10.1007/s11071-024-09992-z.Suche in Google Scholar

[21] A. Muflih Alqahtani, S. Akram, and M. Alosaimi, “Study of bifurcations, chaotic structures with sensitivity analysis and novel soliton solutions of non-linear dynamical model,” J. Taibah Univ. Sci., vol. 18, no. 1, p. 2399870, 2024, https://doi.org/10.1080/16583655.2024.2399870.Suche in Google Scholar

[22] B. Mohan and S. Kumar, “Painlevé analysis, restricted bright-dark N-solitons, and N-rogue waves of a (4 + 1)-dimensional variable-coefficient generalized KP equation in nonlinear sciences,” Nonlinear Dyn., vol. 113, no. 10, pp. 11893–11906, 2025, https://doi.org/10.1007/s11071-024-10645-4.Suche in Google Scholar

[23] A. Saboor, M. Shakeel, X. Liu, A. Zafar, and M. Ashraf, “A comparative study of two fractional nonlinear optical model via modified G′G$\frac{{G}^{\prime }}{G}$-expansion method,” Opt. Quant. Electron., vol. 56, no. 2, p. 259, 2024, https://doi.org/10.1007/s11082-023-05824-3.Suche in Google Scholar

[24] Z. Eidinejad, R. Saadati, C. Li, M. Inc, and J. Vahidi, “The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations,” Int. J. Mod. Phys. B, vol. 38, no. 3, p. 2450043, 2024, https://doi.org/10.1142/s0217979224500437.Suche in Google Scholar

[25] K. K. Ali, M. S. Mehanna, A.-H. Abdel-Aty, and A.-M. Wazwaz, “New soliton solutions of dual mode Sawada Kotera equation using a new form of modified Kudryashov method and the finite difference method,” J. Ocean Eng. Sci., vol. 9, no. 3, pp. 207–215, 2024, https://doi.org/10.1016/j.joes.2022.04.033.Suche in Google Scholar

[26] T. Mahmood, G. Alhawael, S. Akram, and M. ur Rahman, “Exploring the lie symmetries, conservation laws, bifurcation analysis and dynamical waveform patterns of diverse exact solution to the Klein–Gordan equation,” Opt. Quant. Electron., vol. 56, no. 12, p. 1978, 2024, https://doi.org/10.1007/s11082-024-07814-5.Suche in Google Scholar

[27] M. Shakeel, N. Abbas, M. J. U. Rehman, F. S. Alshammari, and A. Al-Yaari, “Lie symmetry analysis and solitary wave solution of biofilm model Allen–Cahn,” Sci. Rep., vol. 14, no. 1, p. 12844, 2024, https://doi.org/10.1038/s41598-024-62315-5.Suche in Google Scholar PubMed PubMed Central

[28] J. Zhang, J. Manafian, S. Raut, S. Roy, K. H. Mahmoud, and A. S. A. Alsubaie, “Study of two soliton and shock wave structures by weighted residual method and Hirota bilinear approach,” Nonlinear Dyn., vol. 112, no. 14, pp. 12375–12391, 2024, https://doi.org/10.1007/s11071-024-09706-5.Suche in Google Scholar

[29] J. A. Haider, A. M. S. Alhuthali, and M. A. Elkotb, “Exploring novel applications of stochastic differential equations: unraveling dynamics in plasma physics with the Tanh-Coth method,” Results Phys., vol. 60, p. 107684, 2024, https://doi.org/10.1016/j.rinp.2024.107684.Suche in Google Scholar

[30] A. Farooq, M. I. Khan, and W. X. Ma, “Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method,” Opt. Quant. Electron., vol. 56, no. 4, p. 542, 2024, https://doi.org/10.1007/s11082-023-06258-7.Suche in Google Scholar

[31] M. M. A. Khater, “Modeling wave propagation with gravity and surface tension: soliton solutions for the generalized Hietarinta-type equation,” Qual. Theory Dyn. Syst., vol. 23, no. 2, p. 86, 2024, https://doi.org/10.1007/s12346-023-00945-2.Suche in Google Scholar

[32] M. Iqbal, A. R. Seadawy, D. Lu, and Z. Zhang, “Multiple optical soliton solutions for wave propagation in nonlinear low-pass electrical transmission lines under analytical approach,” Opt. Quant. Electron., vol. 56, no. 1, p. 35, 2024, https://doi.org/10.1007/s11082-023-05611-0.Suche in Google Scholar

[33] C. X. Xue, E. Pan, and S. Y. Zhang, “Solitary waves in a magneto-electro-elastic circular rod,” Smart Mater. Struct., vol. 20, no. 10, p. 105010, 2011, https://doi.org/10.1088/0964-1726/20/10/105010.Suche in Google Scholar

[34] A. Kumar, S. Kumar, N. Bohra, G. Pillai, R. Kapoor, and J. Rao, “Exploring soliton solutions and interesting wave-form patterns of the (1 + 1)-dimensional longitudinal wave equation in a magnetic-electro-elastic circular rod,” Opt. Quant. Electron., vol. 56, no. 6, p. 1029, 2024, https://doi.org/10.1007/s11082-024-06901-x.Suche in Google Scholar

[35] U. Younas, E. Hussain, J. Muhammad, M. Sharaf, and M. E. Meligy, “Chaotic structure, sensitivity analysis and dynamics of solitons to the nonlinear fractional longitudinal wave equation,” Int. J. Theor. Phys., vol. 64, no. 2, p. 42, 2025, https://doi.org/10.1007/s10773-025-05916-8.Suche in Google Scholar

[36] A. M. Djaouti, M. M. Roshid, A. Abdeljabbar, and A. Al-Quran, “Bifurcation analysis and solitary wave solution of fractional longitudinal wave equation in magneto-electro-elastic (MEE) circular rod,” Results Phys., vol. 64, p. 107918, 2024, https://doi.org/10.1016/j.rinp.2024.107918.Suche in Google Scholar

[37] M. A. El-Shorbagy, S. Akram, M. ur Rahman, and H. A. Nabwey, “Analysis of bifurcation, chaotic structures, lump and M − W-shape soliton solutions to (2 + 1) complex modified Korteweg-de-Vries system,” AIMS Math., vol. 9, no. 6, pp. 16116–16145, 2024, https://doi.org/10.3934/math.2024780.Suche in Google Scholar

[38] C. Bhan et al.., “Bifurcation, chaotic behavior and soliton solutions to the KP-BBM equation through new Kudryashov and generalized Arnous methods,” AIMS Math., vol. 9, no. 4, pp. 8749–8767, 2024, https://doi.org/10.3934/math.2024424.Suche in Google Scholar

[39] I. Alazman, “Dynamics of Lie symmetry, Paul–Painlevé approach, bifurcation analysis to the Ivancevic option pricing model via a optimal system of Lie subalgebra,” AIMS Math., vol. 10, no. 4, pp. 8965–8987, 2025, https://doi.org/10.3934/math.2025411.Suche in Google Scholar

Received: 2025-05-24
Accepted: 2025-09-25
Published Online: 2025-10-13

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2025-0205/pdf?lang=de
Button zum nach oben scrollen