Startseite A novel machine learning framework to approximate modified Bessel functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel machine learning framework to approximate modified Bessel functions

  • Anuwedita Singh EMAIL logo
Veröffentlicht/Copyright: 20. August 2025

Abstract

This article presents the precise approximations for modified Bessel functions of the second kind. Building on a well-established method for function approximation, the enhanced approach, incorporating machine learning techniques, is used to approximate Bessel functions such as K0, K1, K1/4, I0, I1, and I1/3. These approximations are demonstrated to be highly effective in various applications, such as thermal average and partition function, providing a robust alternative to repeated numerical integration.


Corresponding author: Anuwedita Singh, Department of Engineering Science, Atal Bihari Vajpayee – Indian Institute of Information Technology and Management, Gwalior, MP, India, E-mail:

Acknowledgments

I would like to thank Mr. Aviv Orly for the helpful discussion.

  1. Research ethics: This article does not contain any studies with human participants or animals performed by any of the authors.

  2. Informed consent: This study did not involve human participants, and informed consent was therefore not required.

  3. Author contributions: Anuwedita Singh: Conceptualization; methodology; investigation; writing original draft; writing review editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: OpenAI, GPT-3 was used solely for grammar correction and language refinement.

  5. Conflict of interest: The author certify that they have no conflict of interest in the subject or materials discussed in this manuscript.

  6. Research funding: There is no grant for this article.

  7. Data availability: Data sharing does not apply to this article, as no datasets were generated or analyzed during the current study.

References

[1] A. Singh, P. Mishra, and S. Das, “Dynamic stress intensity factors of an interfacial crack in orthotropic elastic strips under impact loading conditions,” ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 99, no. 1, 2019, Art. no. 201800143, https://doi.org/10.1002/zamm.201800143.Suche in Google Scholar

[2] D. Amos, “Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order,” ACM Trans. Math. Softw. (TOMS), vol. 12, no. 3, pp. 265–273, 1986, https://doi.org/10.1145/7921.214331.Suche in Google Scholar

[3] P. Hunana, et al.., “An introductory guide to fluid models with anisotropic temperatures. Part 2. Kinetic theory, padé approximants and Landau fluid closures,” J. Plasma Phys., vol. 85, no. 6, 2019, Art. no. 205850603, https://doi.org/10.1017/s0022377819000850.Suche in Google Scholar

[4] A. Pozzi, Applications of Pade’Approximation Theory in Fluid Dynamics, vol. 14, Singapore, World Scientific Publishing Co. Pte. Ltd., 1994.Suche in Google Scholar

[5] M. Prévost and T. Rivoal, “Application of padé approximation to euler’s constant and stirling’s formula,” Ramanujan J., vol. 54, no. 1, pp. 177–195, 2021, https://doi.org/10.1007/s11139-019-00201-9.Suche in Google Scholar

[6] A. Bultheel, “Applications of padé approximants and continued fractions in systems theory,” in Mathematical Theory of Networks and Systems: Proceedings of the MTNS-83 International Symposium Beer Sheva, Israel, June 20–24, 1983, Springer, 2005, pp. 130–148.Suche in Google Scholar

[7] A. GeorgeJr. and L. J. Gammel, The Padé Approximant in Theoretical Physics, vol. 71, New York, Academic Press, INC, 1971.Suche in Google Scholar

[8] K. Jordan, J. Kinsey, and R. Silbey, “Use of pade approximants in the construction of diabatic potential energy curves for ionic molecules,” J. Chem. Phys., vol. 61, no. 3, pp. 911–917, 1974, https://doi.org/10.1063/1.1682034.Suche in Google Scholar

[9] G. A. Baker and P. Graves-Morris, Pade Approximants, vol. 59, Cambridge, Cambridge University Press, 1996.Suche in Google Scholar

[10] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, New York, Springer, 1999.10.1007/978-1-4757-3069-2Suche in Google Scholar

[11] F. Maass, P. Martin, and J. Olivares, “Analytic approximation to bessel function J0(x),” Comput. Appl. Math., vol. 39, no. 3, p. 222, 2020, https://doi.org/10.1007/s40314-020-01238-z.Suche in Google Scholar

[12] F. Maass and P. Martin, “Precise analytic approximations for the Bessel function J1 (x),” Results Phys., vol. 8, pp. 1234–1238, 2018. https://doi.org/10.1016/j.rinp.2018.01.071.Suche in Google Scholar

[13] P. Martin, J. Olivares, and A. Sotomayor, “Precise analytic approximation for the modified Bessel function i 1 (x),” Rev. Mex. Fis., vol. 63, no. 2, pp. 130–133, 2017.Suche in Google Scholar

[14] P. Martin, J. Olivares, F. Maass, and E. Valero, “Analytic approximations for special functions, applied to the modified bessel functions I2 (x) and I2/3 (x),” Results Phys., vol. 11, pp. 1028–1033, 2018. https://doi.org/10.1016/j.rinp.2018.10.029.Suche in Google Scholar

[15] P. Martin and F. Maass, “Accurate analytic approximation to the modified bessel function of second kind K0(x),” Results Phys., vol. 35, 2022, Art. no. 105283, https://doi.org/10.1016/j.rinp.2022.105283.Suche in Google Scholar

[16] A. Orly, “Analytical approximations as close as desired to special functions,” Axioms, vol. 14, no. 8, p. 566, 2025, https://doi.org/10.3390/axioms14080566.Suche in Google Scholar

[17] G. A. BakerJr. and J. L. Gammel, “The padé approximant,” J. Math. Anal. Appl., vol. 2, no. 1, pp. 21–30, 1961, https://doi.org/10.1016/0022-247x(61)90042-7.Suche in Google Scholar

[18] J. L. López and N. M. Temme, “Two-point taylor expansions of analytic functions,” Stud. Appl. Math., vol. 109, no. 4, 2002, https://doi.org/10.1111/1467-9590.00225.Suche in Google Scholar

[19] Z. K. Bojdi, S. Ahmadi-Asl, and A. Aminataei, “A new extended pade approximation and its application,” Adv. Numer. Anal., vol. 1, p. 263467, 2013. https://doi.org/10.1155/2013/263467.Suche in Google Scholar

[20] M. H. Holmes, Introduction to Perturbation Methods, vol. 20, New York, Springer, 2012.Suche in Google Scholar

[21] P. Virtanen, et al.., “Scipy 1.0: fundamental algorithms for scientific computing in python,” Nat. Methods, vol. 17, no. 3, pp. 261–272, 2020, https://doi.org/10.1038/s41592-019-0686-2.Suche in Google Scholar PubMed PubMed Central

[22] X. Wang, L. Yan, and Q. Zhang, “Research on the application of gradient descent algorithm in machine learning,” in 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), 2021, pp. 11–15.10.1109/ICCNEA53019.2021.00014Suche in Google Scholar

[23] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. https://doi.org/10.1023/a:1008202821328.Suche in Google Scholar

[24] P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: improved analysis,” Nucl. Phys. B, vol. 360, no. 1, pp. 145–179, 1991, https://doi.org/10.1016/0550-3213(91)90438-4.Suche in Google Scholar

[25] Inc., W.R., Mathematica, Version 14.0, Champaign, IL, 2024. Available at: https://www.wolfram.com/mathematica.Suche in Google Scholar

[26] G. Van Rossum, Python Tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, CWI, 1995.Suche in Google Scholar

[27] S. K. Bhattacharya, “Bayesian approach to life testing and reliability estimation,” J. Am. Stat. Assoc., vol. 62, no. 317, pp. 48–62, 1967. https://doi.org/10.1080/01621459.1967.10482887.Suche in Google Scholar

[28] M. D. Alexandrov and A. A. Lacis, “A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function,” Appl. Math. Comput., vol. 116, nos. 1–2, pp. 153–165, 2000, https://doi.org/10.1016/s0096-3003(99)00201-5.Suche in Google Scholar

[29] S. Tan and L. Jiao, “Multishrinkage: analytical form for a bayesian wavelet estimator based on the multivariate laplacian model,” Opt. Lett., vol. 32, no. 17, pp. 2583–2585, 2007, https://doi.org/10.1364/ol.32.002583.Suche in Google Scholar PubMed

Received: 2025-05-13
Accepted: 2025-08-03
Published Online: 2025-08-20

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2025-0187/html
Button zum nach oben scrollen