Abstract
This work advances our 2D scalar electrodynamics (SED) model, a relativistic analogue of type-II superconductivity, by implementing a cylindrical coordinate representation. This adaptation addresses the importance of cylindrical symmetry in describing 2D systems, especially those featuring Dirac fermion bound states in magnetic fields. Focusing on a specific example, we explore the relativistic limit, significant in astrophysical environments like neutron-star cores, where magnetic fields reach critical levels. Along the lines of the Ginzburg–Landau theory we postulate the structure the proton vortex-supercurrent, and connect it with the SED current. From this connection we analytically determine the squared modulus of the relativistic order parameter state which is to be proportional to the local density of Cooper pairs in the superconducting condensate. This study could contribute to the theoretical understanding of superconductivity in strong electromagnetic fields within the SED framework, with potential applications to neutron star physics.
Funding source: Universidad de Los Andes, Chile
Award Identifier / Grant number: FAI 12.22
Acknowledgments
Universidad de Los Andes, Santiago, Chile.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: Universidad de Los Andes, Santiago, Chile, through grant FAI 12.22.
-
Data availability: Not applicable.
References
[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev., vol. 106, p. 162, 1957, J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., vol. 108, no. 4, p. 1175, 1957. https://doi.org/10.1103/physrev.106.162.Suche in Google Scholar
[2] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys. Rev., vol. 104, no. 16, p. 1189, 1956. https://doi.org/10.1103/physrev.104.1189.Suche in Google Scholar
[3] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Sov. Phys. JETP, vol. 20, no. 12, p. 1064, 1950.Suche in Google Scholar
[4] A. A. Abrikosov, “On the magnetic properties of superconductors of the second group,” Sov. Phys. JETP, vol. 5, no. 14, p. 1174, 1957.Suche in Google Scholar
[5] K. Capelle, M. A. L. Marques, and E. K. U. Gross, “Relativistic theory of superconductivity,” in Condensed Matter Theories, vol. 16, S. Hernandez, Ed., New York, Nova Press, 2001, p. 253.Suche in Google Scholar
[6] M. Marques, K. Capelle, and E. K. U. Gross, “Theory of relativistic effects in superconductors,” Phys. C: Supercond., vol. 317–318, no. 3, pp. 508–510, 1999. https://doi.org/10.1016/s0921-4534(99)00111-2.Suche in Google Scholar
[7] J. Deng, J. Wang, and Q. Wang, “BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation,” Phys. Rev. D, vol. 78, no. 7, p. 034014, 2008. https://doi.org/10.1103/physrevd.78.034014.Suche in Google Scholar
[8] L. A. Kondratyuk, M. M. Giannini, and M. I. Krivoruchenko, “The SU(2) colour superconductivity,” Phys. Lett. B, vol. 269, no. 10, p. 139, 1991. https://doi.org/10.1016/0370-2693(91)91465-8.Suche in Google Scholar
[9] R. Anglani, et al.., “Crystalline color superconductors,” Rev. Mod. Phys., vol. 86, no. 9, p. 509, 2014. https://doi.org/10.1103/revmodphys.86.509.Suche in Google Scholar
[10] T. Ohsaku, “Dynamical chiral symmetry breaking and superconductivity in the supersymmetric Nambu–Jona-Lasinio model at finite temperature and density,” Phys. Lett. B, vol. 634, no. 8, p. 285, 2006. https://doi.org/10.1016/j.physletb.2006.01.049.Suche in Google Scholar
[11] S. A. Bruce, “Nambu Jona-Lasinio model of relativistic superconductivity,” Z. Naturforsch. A, vol. 78, no. 12, p. 1107, 2023. https://doi.org/10.1515/zna-2023-0120.Suche in Google Scholar
[12] S. A. Bruce, “Nonlinear electrodynamics and its possible connection to relativistic superconductivity: an example,” Z. Naturforsch. A, vol. 79, no. 11, p. 1041, 2024. https://doi.org/10.1515/zna-2024-0136.Suche in Google Scholar
[13] S. A. Bruce, “Nonlinear electrodynamics and its possible connection to relativistic superconductivity: instance of a time-dependent system,” Z. Naturforsch. A, vol. 80, no. 6, p. 519, 2025. https://doi.org/10.1515/zna-2024-0208.Suche in Google Scholar
[14] S. A. Bruce, “Relativistic superconductivity in the framework of scalar electrodynamics: the order state as a two-complex component field,” Int. J. Mod. Phys. B, vol. 39, no. 20, p. 2550183, 2025. https://doi.org/10.1142/S0217979225501838.Suche in Google Scholar
[15] L. A. Kondratyuk, M. M. Giannini, and M. I. Krivoruchenko, “The SU(2) colour superconductivity,” Phys. Lett. B, vol. 269, no. 12, p. 139, 1991, Z. Phys. A, vol. 344, p. 99, 1992, https://doi.org/10.1016/0370-2693(91)91465-8.Suche in Google Scholar
[16] M. Iwasaki and T. Iwado, “Superconductivity in quark matter,” Phys. Lett. B, vol. 350, no. 7, p. 163, 1995. https://doi.org/10.1016/0370-2693(95)00322-c.Suche in Google Scholar
[17] S. Mukherjee and A. Lahiri, “Emergent vortex–electron interaction from dualization,” Ann. Phys., vol. 418, no. 15, p. 168167, 2020. https://doi.org/10.1016/j.aop.2020.168167.Suche in Google Scholar
[18] M. Alford, K. Rajagopal, and F. Wilczek, “QCD at finite baryon density: nucleon droplets and color superconductivity,” Phys. Lett. B, vol. 422, no. 12, p. 247, 1998. https://doi.org/10.1016/s0370-2693(98)00051-3.Suche in Google Scholar
[19] T. Ohsaku, “BCS and generalized BCS superconductivity in relativistic quantum field theory: formulation,” Phys. Rev. B, vol. 65, p. 024512, 2001, Phys. Lett. B, vol. 634, no. 13, p. 285, 2006. https://doi.org/10.1103/physrevb.65.024512.Suche in Google Scholar
[20] A. J. Beekman and J. Zaanen, “Electrodynamics of Abrikosov vortices: the field theoretical formulation,” Front. Phys., vol. 6, no. 4, p. 357, 2011. https://doi.org/10.1007/s11467-011-0205-0.Suche in Google Scholar
[21] O. Iaroshenko, V. Rybalko, V. Vinokur, and L. Berlyand, “Vortex phase separation in mesoscopic superconductors,” Sci. Rep., vol. 3, no. 3, p. 1758, 2013. https://doi.org/10.1038/srep01758.Suche in Google Scholar
[22] S. A. Bruce, “Model of relativistic superconductivity,” Int. J. Mod. Phys. B, vol. 38, p. 2450271, 2024, Int. J. Mod. Phys. B, vol. 38, no. 20, p. 2450387, 2024. https://doi.org/10.1142/s0217979224502710.Suche in Google Scholar
[23] A. Jellal, A. D. Alhaidari, and H. Bahlouli, “Confined Dirac fermions in a constant magnetic field,” Phys. Rev. A, vol. 80, no. 12, p. 012109, 2009. https://doi.org/10.1103/physreva.80.012109.Suche in Google Scholar
[24] B. Sacépé, M. Feigel’man, and T. M. Klapwijk, “Quantum breakdown of superconductivity in low-dimensional materials,” Nat. Phys., vol. 16, no. 11, p. 734, 2020. https://doi.org/10.1038/s41567-020-0905-x.Suche in Google Scholar
[25] Y. Ueno, A. Yamakage, Y. Tanaka, and M. Sato, “Symmetry-protected majorana fermions in topological crystalline superconductors: theory and application to Sr2RuO4,” Phys. Rev. Lett., vol. 111, no. 4, p. 087002, 2013.10.1103/PhysRevLett.111.087002Suche in Google Scholar PubMed
[26] F. Loder, A. Kampf, and T. Kopp, “Route to topological superconductivity via magnetic field rotation,” Sci. Rep., vol. 5, no. 6, p. 15302, 2015. https://doi.org/10.1038/srep15302.Suche in Google Scholar PubMed PubMed Central
[27] Y. Ren, Z. Qiao, and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys., vol. 79, no. 16, p. 066501, 2016. https://doi.org/10.1088/0034-4885/79/6/066501.Suche in Google Scholar PubMed
[28] J. Avila, F. Pearanda, E. Prada, P. San-Jose, and R. Aguado, “Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy,” Commun. Phys., vol. 2, no. 19, p. 133, 2019.10.1038/s42005-019-0231-8Suche in Google Scholar
[29] A. A. Zyuzin and A. A. Burkov, “Topological response in Weyl semimetals and the chiral anomaly,” Phys. Rev. B, vol. 86, no. 3, p. 115133, 2012. https://doi.org/10.1103/physrevb.86.115133.Suche in Google Scholar
[30] Y. Chen, S. Wu, and A. A. Burkov, “Axion response in Weyl semimetals,” Phys. Rev. B, vol. 88, no. 7, p. 125105, 2013. https://doi.org/10.1103/physrevb.88.125105.Suche in Google Scholar
[31] P. Goswami and S. Tewari, “Axionic field theory of (3+1)-dimensional Weyl semimetals,” Phys. Rev. B, vol. 88, no. 9, p. 245107, 2013.10.1103/PhysRevB.88.245107Suche in Google Scholar
[32] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett., vol. 95, no. 16, p. 146802, 2005.10.1103/PhysRevLett.95.226801Suche in Google Scholar PubMed
[33] M. Frachet, et al.., “Hidden magnetism at the pseudogap critical point of a cuprate superconductor,” Nat. Phys., vol. 16, no. 20, p. 1064, 2020. https://doi.org/10.1038/s41567-020-0950-5.Suche in Google Scholar
[34] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, “Transport in two-dimensional topological materials: recent developments in experiment and theory,” 2D Mater, vol. 7, no. 12, p. 022007, 2020.10.1088/2053-1583/ab6ff7Suche in Google Scholar
[35] J. Frank, A. King, and D. J. Raine, Accretion Power in Astrophysics, 3rd ed. Cambridge, Cambridge University Press, 2002.10.1017/CBO9781139164245Suche in Google Scholar
[36] L. H. Ryder, Quantum Field Theory, Cambridge, Cambridge University Press, 1996.10.1017/CBO9780511813900Suche in Google Scholar
[37] V. Rubakov, Classical Theory of Gauge Fields, 1st ed. Princeton, New Jersey, Princeton University Press, 2002.Suche in Google Scholar
[38] The Higgs mechanism was independently introduced by several authors in the context of local-gauge invariant relativistic superconductivity models: P. W. Anderson (1963); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble (1964); P. Higgs (1964); and in the context of the mass of gauge vector mesons, by F. Englert and R. Brout (1964).Suche in Google Scholar
[39] V. Graber, N. Andersson, K. Glampedakis, and S. K. Lander, “Magnetic field evolution in superconducting neutron stars,” MNRAS, vol. 453, no. 11, p. 671, 2015. https://doi.org/10.1093/mnras/stv1648.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston