Startseite Semi-analytical solution of dissipative rogue waves and breathers in nonthermal plasma
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Semi-analytical solution of dissipative rogue waves and breathers in nonthermal plasma

  • Eman I. El-Awady ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Mai 2025

Abstract

This work examines the propagation of dissipative dust-ion-acoustic (DIA) waves in a plasma with non-thermal electrons, heated positive ions, and stationary negative dust particles. This discussion also includes dissipative rogue waves (DRWs) and breathers. The linear damped nonlinear Schrödinger equation (dNLSE) and its detailed derivation are described here. When it comes to differential equations, the dNLSE is believed to be one that cannot be integrated. As a result of this, even with the inclusion of the linear damping term, there is still no solution that is accurate. In light of this, we will proceed to meticulously derive and present the semi-analytical solution today. This method allows for the analytical solution of the fundamental nonlinear Schrödinger equation (NLSE), with the damping term being left out of the equation. Using this method as a starting point, one can begin the process of solving the linearly damped NLSE. In addition to this, we will evaluate the analytical solutions of the standard NLSE in comparison to the approximate analytical solutions of the dNLSE. The manner in which plasma properties influence the characteristics of dissipatively modulated DIA waves is the subject of extensive research. To be more specific, the nonthermal electron count, the kinematic viscosity of the ions, and the temperature ratio of the ions to electrons are all taken into consideration. There is a possibility that this work will shed light on the modulated DIA structures that are present in both laboratory plasmas and space plasmas, as well as make predictions regarding such structures.


Corresponding author: Eman I. El-Awady, Faculty of Science, Department of Physics, Port Said University, Port Said 42521, Egypt, E-mail: 

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: All data generated or analyzed during this study are included in this published article.

References

[1] a. A. M. Wazwaz, “Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities,” Nonlinear Dyn., vol. 83, no. 1, p. 591, 2015, https://doi.org/10.1007/s11071-015-2349-x.b. A. Ali, M. Rasheed, M. Anwar, M. Irfan, and Z. Hussain, “Fractional calculus approach for the phase dynamics of Josephson junction,” Chaos Solitons Fractals, vol. 143, p. 110572, 2021.Suche in Google Scholar

[2] a. M. Anwar, R. Ahmad, T. Shahzad, M. Irfan, and M. Ashraf, “Electrified fractional nanofluid flow with suspended carbon nanotubes,” Comput. Math. Appl., vol. 80, no. 5, p. 1375, 2020.b. M. S. Anwar, M. Hussain, Z. Hussain, V. Puneeth, and M. Irfan, “Clay-based cementitious nanofluid flow subjected to Newtonian heating,” Int. J. Mod. Phys. B, vol. 37, no. 14, p. 2350140, 2023, https://doi.org/10.1142/s0217979223501400.Suche in Google Scholar

[3] a. B. Jamil, M. Anwar, A. Rasheed, and M. Irfan, “MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation,” Chin. J. Phys., vol. 67, p. 512, 2020, https://doi.org/10.1016/j.cjph.2020.08.012.b. M. S. Anwar, M. Hussain, Z. Hussain, V. Puneeth, and M. Irfan, “Clay-based cementitious nanofluid flow subjected to Newtonian heating,” Int. J. Mod. Phys. B, vol. 37, no. 14, p. 2350140, 2023, https://doi.org/10.1142/s0217979223501400.c. M. Anwar, M. S. Alqarni, and M. Irfan, “Exploring the marvels of heat transfer: MHD convection at a stagnation point in non-Newtonian fluid with yield stress and chemical reactions,” Chin. J. Phys., vol. 89, p. 1299, 2024, https://doi.org/10.1016/j.cjph.2024.01.030.Suche in Google Scholar

[4] a. X. Lü, L.-L. Zhang, and W.-X. Ma, “Oceanic shallow-water description with (2 + 1)-dimensional generalized variable-coefficient Hirota -Satsuma -Ito equation: Painlevé analysis, soliton solutions, and lump solutions,” Phys. Fluids, vol. 36, p. 064110, 2024.b. Y. Zhang and X. Lü, “Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers,” Physica D, vol. 468, p. 134284, 2024.10.1063/5.0193477Suche in Google Scholar

[5] a. C. Han and X. Lü, “Variable coefficient-informed neural network for PDE inverse problem in fluid dynamics,” Physica D, vol. 472, p. 134362, 2025.b. S. Chen and X. Lü, “Quantifying traffic emission reductions and traffic congestion alleviation from high-capacity ride-sharing,” Transportmetrica B, vol. 12, no. 1, p. 2336029, 2024, https://doi.org/10.1080/21680566.2024.2423235.c. Y.-B. Su, X. Lü, S.-K. Li, L.-X. Yang, and Z. Gao, “Self-adaptive equation embedded neural networks for traffic flow state estimation with sparse data,” Phys. Fluids, vol. 36, no. 10, p. 104127, 2024, https://doi.org/10.1063/5.0230757.Suche in Google Scholar

[6] a. C.-Z. Li, X. Lü, J.-J. Gong, and Y. Lei, “Extended SEIR model of COVID-19 spread focusing on compartmental flow in England,” Nonlinear Dyn., vol. 113, p. 971, 2025.b. C. Han and X. Lü, “Novel patterns in the space variable fractional order Gray -Scott model,” Nonlinear Dyn., vol. 112, p. 16135, 2024.c. F. Cao, X. Lü, Y.-X. Zhou, and X.-Y. Cheng, “Modified SEIAR infectious disease model for Omicron variants spread dynamics,” Nonlinear Dyn., vol. 111, p. 14597, 2023.10.1007/s11071-024-09748-9Suche in Google Scholar

[7] a. X. Peng, Y.-W. Zhao, and X. Lü, “Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications,” Nonlinear Dyn., vol. 112, p. 1291, 2024.b. D. Gao, W.-X. Ma, and X. Lü, “Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2 + 1)-dimensional Konopelchenko-Dubrovsky equation,” Z. Naturforsch. A, vol. 79, p. 887, 2024.c. L.-L. Zhang, X. Lü, and S.-Z. Zhu, “Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation,” Int. J. Theor. Phys., vol. 63, p. 160, 2024.10.1007/s11071-023-09083-5Suche in Google Scholar

[8] A. A. Mamun, K. S. Ashraf, and P. K. Shukla, “Effects of polarization force and effective dust temperature on dust-acoustic solitary and shock waves in a strongly coupled dusty plasma,” Phys. Rev. E, vol. 82, p. 026405, 2010.10.1103/PhysRevE.82.026405Suche in Google Scholar PubMed

[9] Y. Wang and T. S. Hahm, “Response to “Comment on ‘Nonlinear gyrokinetic theory with polarization drift’” [Phys. Plasmas 17, 124701 (2010)],” Phys. Plasmas, vol. 17, p. 113701, 2010, https://doi.org/10.1063/1.3521606.Suche in Google Scholar

[10] S. A. El-Tantawy, E. I. El-Awady, and M. Tribeche, “On the rogue waves propagation in non-Maxwellian complex space plasmas,” Phys. Plasmas, vol. 22, no. 11, p. 113705, 2015, https://doi.org/10.1063/1.4935916.Suche in Google Scholar

[11] M. Farooq and M. Ahmed, “Dust ion acoustic waves in four component magnetized dusty plasma with effect of slow rotation and superthermal electrons,” Phys. Plasma, vol. 24, no. 12, p. 123707, 2017, https://doi.org/10.1063/1.5011248.Suche in Google Scholar

[12] E. I. El-Awady, S. A. El-Tantawy, and A. Abdikian, “Dissipative cylindrical magnetosonic solitary waves in a magnetized quantum dusty plasma,” Rom. Rep. Phys., vol. 71, p. 105, 2019.Suche in Google Scholar

[13] A. A. Noman, et al.., “Dust-ion-acoustic rogue waves in a dusty plasma having super-thermal electrons,” Gases, vol. 1, no. 2, p. 106, 2021, https://doi.org/10.3390/gases1020009.Suche in Google Scholar

[14] M. R. Amin, G. E. Morfill, and P. K. Shukla, “Modulational instability of dust-acoustic and dust-ion-acoustic waves,” Phys. Rev. E, vol. 58, no. 5, p. 6517, 1998, https://doi.org/10.1103/physreve.58.6517.Suche in Google Scholar

[15] D.-L. Xiao, J. X. Ma, Y.-F. Li, Y. Xia, and M. Y. Yu, “Evolution of nonlinear dust-ion-acoustic waves in an inhomogeneous plasma,” Phys. Plasmas, vol. 13, no. 5, p. 052308, 2006, https://doi.org/10.1063/1.2196247.Suche in Google Scholar

[16] Y.-T. Gao and B. Tian, “Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation,” Phys. Plasmas, vol. 13, no. 11, p. 112901, 2006, https://doi.org/10.1063/1.2363352.Suche in Google Scholar

[17] Y. Nakamura, “Experiments on ion-acoustic shock waves in a dusty plasma,” Phys. Plasmas, vol. 9, no. 2, p. 440, 2002, https://doi.org/10.1063/1.1431974.Suche in Google Scholar

[18] J.-K. Xue, “Nonplanar dust-ion acoustic shock waves with transverse perturbation,” Phys. Plasmas, vol. 12, no. 1, p. 012314, 2005, https://doi.org/10.1063/1.1829298.Suche in Google Scholar

[19] T. Saha and P. Chatterjee, “Obliquely propagating ion acoustic solitary waves in magnetized dusty plasma in the presence of nonthermal electrons,” Phys. Plasmas, vol. 16, no. 1, p. 013707, 2009, https://doi.org/10.1063/1.3067824.Suche in Google Scholar

[20] A. A. Mamun, P. K. Shukla, and B. Eliasson, “Arbitrary amplitude dust ion-acoustic shock waves in a dusty plasma with positive and negative ions,” Phys. Plasmas, vol. 16, no. 11, p. 114503, 2009, https://doi.org/10.1063/1.3261840.Suche in Google Scholar

[21] A. C. Scott, F. Y. F. Chu, and W. McLaughlin, “The soliton: A new concept in applied science,” Proc. IEEE, vol. 61, no. 1, p. 1443, 1973, https://doi.org/10.1109/proc.1973.9296.Suche in Google Scholar

[22] M. J. Ablowitz and H. Segur, Solitions and Inverse Scattering Transform, Philadelphia, SIAM, 1981.10.1137/1.9781611970883Suche in Google Scholar

[23] C. Rogers and W. F. Shadwick, Bäcklund Transformations and their Applications, New York, Academic Press, 1982.Suche in Google Scholar

[24] C. K. Goertz, “Dusty plasmas in the solar system,” Rev. Geophys., vol. 27, no. 2, p. 271, 1989, https://doi.org/10.1029/RG027i002p00271.Suche in Google Scholar

[25] D. A. Mendis and M. Rosenberg, “Cosmic dusty plasma,” Annu. Rev. Astron. Astrophys., vol. 32, p. 419, 1994, https://doi.org/10.1146/annurev.aa.32.090194.002223.Suche in Google Scholar

[26] M. Horlnyi, G. E. Morfill, and E. Grün, “Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere,” Nat. London, vol. 363, p. 144, 1993.10.1038/363144a0Suche in Google Scholar

[27] O. Havnes, et al.., “First detection of charged dust particles in the Earth’s mesosphere,” J. Geophys. Res., vol. 101, no. A5, p. 10839, 1996, https://doi.org/10.1029/96JA00003.Suche in Google Scholar

[28] V. E. Fortov, et al.., “Dusty plasma induced by solar radiation under microgravitational conditions: An experiment on board the Mir orbiting space station,” J. Exp. Theor. Phys., vol. 87, no. 6, p. 1087, 1998, https://doi.org/10.1134/1.558598.Suche in Google Scholar

[29] T. V. Lossevaa, S. I. Popel, and A. P. Golub, “Dust ion -acoustic shock waves in laboratory, ionospheric, and astrophysical plasmas,” Plasma Phys. Rep., vol. 46, no. 11, pp. 1089–1107, 2020.10.1134/S1063780X20110045Suche in Google Scholar

[30] M. Mobarak Hossen, M. S. Alam, S. Sultana, and A. A. Mamun, “Low frequency nonlinear waves in electron depleted magnetized nonthermal plasmas Low frequency nonlinear waves in electron depleted magnetized nonthermal plasmas,” Eur. Phys. J. D, vol. 70, no. 12, p. 252, 2016.10.1140/epjd/e2016-70328-9Suche in Google Scholar

[31] E. I. El-Awady, S. A. El-Tantawy, W. M. Moslem, and P. K. Shukla, “Electron–positron–ion plasma with kappa distribution: Ion acoustic soliton propagation,” Phys. Lett. A, vol. 374, nos. 31–32, pp. 3216–3219, 2010, https://doi.org/10.1016/j.physleta.2010.05.053.Suche in Google Scholar

[32] E. I. El-Awady and M. Djebli, “Dust-acoustic waves in strongly coupled dusty plasmas with nonextensive electrons and ions,” Can. J. Phys., vol. 90, no. 7, pp. 675–681, 2012, https://doi.org/10.1139/p2012-066.Suche in Google Scholar

[33] E. I. El-Awady, S. Hussain, and N. Akhtar, “Investigating Cnoidal Magnetosonic waves in a plasma with non-Maxwellian electrons,” Braz. J. Phys., vol. 55, p. 141, 2025, https://doi.org/10.1007/s13538-025-01766-1.Suche in Google Scholar

[34] R. Boström, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, no. 6, p. 756, 1992, https://doi.org/10.1109/27.199524.Suche in Google Scholar

[35] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja Multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, no. 17, p. 1827, 1994, https://doi.org/10.1029/94GL00886.Suche in Google Scholar

[36] M. Tribeche and G. Boumezoued, “Effect of electron nonthermality on nonlinear electrostatic solitary waves in a charge varying dusty plasma,” Plasma Phys., vol. 15, no. 5, p. 053702, 2008, https://doi.org/10.1063/1.2918328.Suche in Google Scholar

[37] M. Bilal, A. ur-Rehman, S. Mahmood, and M. Shahzad, “Effect of non-thermal and non-extensive parameters on electron plasma waves in hybrid Cairns–Tsallis distributed plasmas,” Eur. Phys. J. Plus, vol. 137, p. 788, 2022, https://doi.org/10.1140/epjp/s13360-022-03006-w.Suche in Google Scholar

[38] M. R. Hassan, S. Biswas, K. Habib, and S. Sultana, “Dust–ion-acoustic waves in a k- nonthermal magnetized collisional dusty plasma with opposite polarity dust,” Results Phys., vol. 33, p. 105106, 2022.10.1016/j.rinp.2021.105106Suche in Google Scholar

[39] D.-N. Gao, Z.-Z. Li, and J.-H. Chen, “Effect of Cairns-Tsallis distribution on ion acoustic waves in interstellar medium,” Chin. J. Phys., vol. 87, pp. 70–81, 2024, https://doi.org/10.1016/j.cjph.2023.10.018.Suche in Google Scholar

[40] a. M. Ruderman, T. Talipova, and E. Pelinovsky, “Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions,” J. Plasma Phys., vol. 74, no. 5, pp. 639–656, 2008, https://doi.org/10.1017/s0022377808007150.b. M. Ruderman, “Freak waves in laboratory and space plasmas: Freak waves in plasmas,” Eur. Phys. J. Spec. Top, vol. 185, no. 1, pp. 57–66, 2010, https://doi.org/10.1140/epjst/e2010-01238-7.Suche in Google Scholar

[41] a. X. Lü, B. Tian, T. Xu, K.-J. Cai, and W.-J. Liu, “Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates,” Ann. Phys., vol. 323, pp. 2554–2565, 2008.b. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep., vol. 528, pp. 47–89, 2013, https://doi.org/10.1016/j.physrep.2013.03.001.Suche in Google Scholar

[42] a. A. Chabchoub, et al.., “Observation of a hierarchy of up to fifth-order rogue waves in a water tank,” Phys. Rev. E – Stat. Nonlinear Soft Matter Phys., vol. 86, p. 056601, 2012, https://doi.org/10.1103/PhysRevE.86.056601.b. G. Xu, A. Chabchoub, D. Pelinovsky, and B. Kibler, “Observation of modulation instability and rogue breathers on stationary periodic waves,” Phys. Rev. Res., vol. 2, no. 3, p. 033528, 2020, https://doi.org/10.1103/physrevresearch.2.033528.Suche in Google Scholar PubMed

[43] E. I. El-Awady, “Generation of freak waves in non-Maxellian dusty plasmas in the domain of Gardner equation,” Astrophys. Space Sci., vol. 364, no. 11, p. 202, 2019, https://doi.org/10.1007/s10509-019-3670-5.Suche in Google Scholar

[44] S. Almutalk, S. A. El-Tantawy, E. I. . . El-Awady, and S. K. El-Labany, “On the numerical solution of nonplanar dust-acoustic super rogue waves in a strongly coupled dusty plasma,” Phys. Lett. A, vol. 383, no. 6, p. 16, 2019.10.1016/j.physleta.2019.03.011Suche in Google Scholar

[45] A. Ankiewicz, N. Devine, and N. Akhmediev, “Are rogue waves robust against perturbations?,” Phys. Lett. A, vol. 378, no. 4, pp. 3997–4000, 2009, https://doi.org/10.1016/j.physleta.2009.08.053.Suche in Google Scholar

[46] E. A. Kuznetsov and A. Nauk, “On solitons in parametrically unstable plasma,” SSSR Dokl., vol. 236, pp. 575–577, 1977.Suche in Google Scholar

[47] Y. C. Ma, “The perturbed plane‐wave solutions of the cubic Schrödinger equation,” Stud. Appl. Math., vol. 60, pp. 43–58, 1979, https://doi.org/10.1002/sapm197960143.Suche in Google Scholar

[48] E. K. El-Shewy, H. G. Abdelwahed, N. F. Abdo, and R. A. Shahein, “Rogue waves for Kadomstev-Petviashvili solutions in a warm dusty plasma with opposite polarity,” Chem. Phys., Phys. Kinet. Plasma Phys., vol. 71, no. 2, p. 284, 2016, https://doi.org/10.3103/s002713491603005x.Suche in Google Scholar

[49] A. Paul, G. Mandal, A. A. Mamun, and M. R. Amin, “The modulation of a dust ion-acoustic wave in a collisional dusty plasma,” Adv. Astrophys., vol. 3, p. 3, 2018, https://doi.org/10.22606/adap.2018.33005.Suche in Google Scholar

[50] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett., 2012, https://doi.org/10.1103/physrevlett.108.233901.Suche in Google Scholar PubMed

[51] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue wave generation in multiple-pulsing mode-locked fiber laser,” J. Optic, vol. 15, no. 6, 2013, https://doi.org/10.1088/2040-8978/15/6/064005.Suche in Google Scholar

[52] M. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett., vol. 40, no. 7, 2015, https://doi.org/10.1364/ol.40.001366.Suche in Google Scholar PubMed

[53] M. Liu, A. Luo, W. Xu, and Z. Luo, “Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser,” Opt. Lett., vol. 41, no. 17, p. 3912, 2016, https://doi.org/10.1364/ol.41.003912.Suche in Google Scholar PubMed

[54] M. Onorato and D. Proment, “Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves,” Phys. Lett. A, vol. 376, no. 45, p. 3057, 2012, https://doi.org/10.1016/j.physleta.2012.05.063.Suche in Google Scholar

[55] M. Amin Phys. Rev. E – Stat. Nonlinear Soft Matter Phys., vol. 92, p. 033106, 2015.Suche in Google Scholar

[56] A. Sikdar, A. Adak, S. Ghosh, and M. Khan, “Electrostatic wave modulation in collisional pair-ion plasmas,” Phys. Plasmas, vol. 25, no. 5, p. 052303, 2018, https://doi.org/10.1063/1.4997224.Suche in Google Scholar

[57] F. Verheest, M. A. Hellberg, and I. Kourakis, “Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons,” Phys. Rev. E, vol. 87, no. 4, p. 043107, 2013, https://doi.org/10.1103/physreve.87.043107.Suche in Google Scholar

[58] P. K. Shukla, N. N. Rao, M. Y. Yu, and N. L. Tsintsadze Phys. Rep., vol. 135, p. 1, 1986.Suche in Google Scholar

[59] P. Chatterjee and R. K. Roychoudhury, “Arbitrary-amplitude electron acoustic solitary waves in a plasma,” J. Plasma Phys., vol. 53, no. 1, p. 25, 1995, https://doi.org/10.1017/s0022377800017992.Suche in Google Scholar

[60] S. Ghosh and R. Bharuthram, “Ion acoustic solitons and double layers in electron–positron–ion plasmas with dust particulates,” Astrophys. Space Sci., vol. 314, nos. 1–3, p. 121, 2008, https://doi.org/10.1007/s10509-008-9748-0.Suche in Google Scholar

[61] M. Berthomier, R. Pottelette, M. Malingre, and Y. Khotyaintsev, “Electron-acoustic solitons in an electron-beam plasma system,” Phys. Plasmas, vol. 7, no. 7, p. 2987, 2000, https://doi.org/10.1063/1.874150.Suche in Google Scholar

[62] R. A. Cairns, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, no. 20, p. 2709, 1995.10.1029/95GL02781Suche in Google Scholar

[63] S. A. El-Tantawy and E. I. El-Awady, “Cylindrical and spherical Akhmediev breather and freak waves in ultracold neutral plasmas,” Phys. Plasmas, vol. 25, no. 1, p. 012121, 2018, https://doi.org/10.1063/1.4989652.Suche in Google Scholar

[64] a. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E, vol. 80, no. 2, p. 026601, 2009, https://doi.org/10.1103/physreve.80.026601.b. B. Kibler, et al.., “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep., vol. 2, p. 463, 2012.Suche in Google Scholar

[65] S. A. El-Tantawy, A. H. Salas, and M. R. Alharthi, “On the analytical and numerical solutions of the linear damped NLSE for modeling dissipative freak waves and breathers in nonlinear and dispersive mediums: An application to a pair-ion plasma,” Front. Phys., vol. 9, p. 580224, 2021, https://doi.org/10.3389/fphy.2021.580224.Suche in Google Scholar

Received: 2025-03-24
Accepted: 2025-05-06
Published Online: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2025-0117/pdf
Button zum nach oben scrollen