Startseite Neutron dynamics in ultra-strong electromagnetic fields: an example model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Neutron dynamics in ultra-strong electromagnetic fields: an example model

  • Stanley A. Bruce ORCID logo EMAIL logo
Veröffentlicht/Copyright: 16. Juli 2024

Abstract

This work is concerned with the relativistic quantum dynamics of a self-interacting neutron in the presence of an external ultra-strong electromagnetic (EM) field in a cylindrical inertial frame. We first regard the Dirac–Pauli (DP) Lagrangian to study the planar dynamics of a neutron polarized along the z-axis subjected to a confining external static EM field composed of a homogeneous magnetic field in the z-direction and a linear radial electric field in the polar plane. The corresponding discrete Landau energy levels are found. As a nonlinear (NL) example model, we introduce a 1-flavor Nambu Jona–Lasinio (NJL) mass term into the DP Lagrangian. The continuous ground-state Landau levels are determined. We readily obtain modified Maxwell’s equations associated with these levels. We consider a simple application of the model related to the dynamics of neutrons in the presence of strong-QED fields inside the surface of aligned neutron stars. We briefly comment on possible classical solitonic solutions of the model.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail: 

Funding source: Universidad de los Andes, Chile

Award Identifier / Grant number: FAI 12.20

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no competing interests.

  4. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.20.

  5. Data availability: Not applicable.

References

[1] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, “Transport in two-dimensional topological materials: recent developments in experiment and theory,” 2D Mater, vol. 7, no. 2, 2020, Art. no. 022007. https://doi.org/10.1088/2053-1583/ab6ff7.Suche in Google Scholar

[2] Y. Ren, Z. Qiao, and Q. Niu, “Topological phases in two-dimensional materials: a review,” Rep. Prog. Phys., vol. 79, no. 6, 2016, Art. no. 066501. https://doi.org/10.1088/0034-4885/79/6/066501.Suche in Google Scholar PubMed

[3] A. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, p. 109, 2009. https://doi.org/10.1103/revmodphys.81.109.Suche in Google Scholar

[4] Y. Aharonov and A. Casher, “Topological quantum effects for neutral particles,” Phys. Rev. Lett., vol. 53, no. 4, p. 319, 1984. https://doi.org/10.1103/physrevlett.53.319.Suche in Google Scholar

[5] A. Cimmino, et al.., “Observation of the topological Aharonov-Casher phase shift by neutron interferometry,” Phys. Rev. Lett., vol. 63, no. 4, p. 380, 1989. https://doi.org/10.1103/physrevlett.63.380.Suche in Google Scholar

[6] A. S. Goldhaber, “Comment on topological quantum effects for neutral particles,” Phys. Rev. Lett., vol. 62, no. 4, p. 482, 1989. https://doi.org/10.1103/physrevlett.62.482.Suche in Google Scholar

[7] H. Kaiser, et al.., “Neutron interferometry investigation of the Aharonov-Casher effect,” Physica, vol. 151, no. 4, p. 68, 1988. https://doi.org/10.1016/0378-4363(88)90147-7.Suche in Google Scholar

[8] Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev., vol. 115, no. 3, p. 485, 1959. https://doi.org/10.1103/physrev.115.485.Suche in Google Scholar

[9] J. Anandan, “Electromagnetic effects in the quantum interference of dipoles,” Phys. Lett. A, vol. 138, no. 8, p. 347, 1989; Phys. Lett. A, vol. 152, no. 5, p. 504, 1991. https://doi.org/10.1016/0375-9601(89)90828-1.Suche in Google Scholar

[10] A. Steinmetz, M. Formanek, and J. Rafelski, “Magnetic dipole moment in relativistic quantum mechanics,” Eur. Phys. J. A, vol. 55, no. 2, p. 40, 2019. https://doi.org/10.1140/epja/i2019-12715-5.Suche in Google Scholar

[11] Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity. I,” Phys. Rev., vol. 122, no. 6, p. 345, 1961; “Dynamical model of elementary particles based on an analogy with superconductivity. II,” Phys. Rev., vol. 124, no. 8, p. 246, 1961.10.1103/PhysRev.124.246Suche in Google Scholar

[12] S. A. Bruce, L. Roa, C. Saavedra, and A. B. Klimov, “Unbroken supersymmetry in the Aharonov-Casher effect,” Phys. Rev. A, vol. 60, no. 1, p. R1, 1999. https://doi.org/10.1103/physreva.60.r1.Suche in Google Scholar

[13] V. G. Bagrov and D. M. Gitman, Exact Solutions of Relativistic Wave Equations, London, Kluwer Academic Publishers, 1990.10.1007/978-94-009-1854-2Suche in Google Scholar

[14] S. A. Bruce, “Magnetically confined electrons and the Nambu–Jona-Lasinio model,” Eur. Phys. J. Plus, vol. 136, no. 9, p. 498, 2021. https://doi.org/10.1140/epjp/s13360-021-01502-z.Suche in Google Scholar

[15] S. A. Bruce, “Nambu Jona-Lasinio model of relativistic superconductivity,” Z. Naturforsch. A, vol. 78, no. 12, p. 1107, 2023. https://doi.org/10.1515/zna-2023-0120.Suche in Google Scholar

[16] J. Anandan and C. R. Hagen, “Neutron acceleration in uniform electromagnetic fields,” Phys. Rev. A, vol. 50, no. 5, p. 2860, 1994. https://doi.org/10.1103/physreva.50.2860.Suche in Google Scholar PubMed

[17] J. Anandan, “Tests of parity and time-reversal noninvariance using neutron interference,” Phys. Rev. Lett., vol. 24, no. 3, p. 1660, 1982.10.1103/PhysRevLett.48.1660Suche in Google Scholar

[18] D. D. Ivanenko, “Notes to the theory of interaction via particles,” Sov. Phys. JETP, vol. 13, no. 1, p. 141, 1938.Suche in Google Scholar

[19] M. Soler, “Classical, stable, nonlinear spinor field with positive rest energy,” Phys. Rev. D, vol. 1, no. 1, p. 2766, 1970. https://doi.org/10.1103/physrevd.1.2766.Suche in Google Scholar

[20] K. Kondo, “Bosonization and duality of masive thirring model,” Prog. Theor. Phys., vol. 94, no. 5, p. 899, 1995.10.1143/PTP.94.899Suche in Google Scholar

[21] Y. Nogami and F. M. Toyama, “Transparent potential for the one-dimensional Dirac equation,” Phys. Rev. A, vol. 45, no. 9, p. 5258, 1992. https://doi.org/10.1103/physreva.45.5258.Suche in Google Scholar PubMed

[22] C. R. Hagen, “New solutions of the thirring model,” Nu. Cim., vol. 51, p. 169, 1967. https://doi.org/10.1007/bf02712329.Suche in Google Scholar

[23] J. I. Cirac, P. Maraner, and J. K. Pachos, “Cold atom simulation of interacting relativistic quantum field theories,” Phys. Rev. Lett., vol. 105, no. 8, 2010, Art. no. 190403. https://doi.org/10.1103/physrevlett.105.190403.Suche in Google Scholar

[24] S. Coleman, “Quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. D, vol. 11, no. 12, p. 2088, 1975. https://doi.org/10.1103/physrevd.11.2088.Suche in Google Scholar

[25] S. P. Klevansky, “The Nambu—Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys., vol. 64, no. 11, p. 649, 1992. https://doi.org/10.1103/revmodphys.64.649.Suche in Google Scholar

[26] M. Alford, “Color-superconducting quark matter,” Annu. Rev. Nucl. Part. Sci., vol. 51, no. 5, p. 131, 2001. https://doi.org/10.1146/annurev.nucl.51.101701.132449.Suche in Google Scholar

[27] P. F. Bedaque and T. Schafer, “High-density quark matter under stress,” Nucl. Phys. A, vol. 697, no. 3, p. 802, 2002. https://doi.org/10.1016/s0375-9474(01)01272-6.Suche in Google Scholar

[28] G. Grams, R. Somasundaram, J. Margueron, and S. Reddy, “Properties of the neutron star crust: quantifying and correlating uncertainties with improved nuclear physics,” Phys. Rev. C, vol. 105, no. 2, 2022, Art. no. 035806. https://doi.org/10.1103/physrevc.105.035806.Suche in Google Scholar

[29] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1 Equation of State and Structure, New York, Springer, 2007.10.1007/978-0-387-47301-7Suche in Google Scholar

[30] R. F. O’Connel, “Effect of the anomalous magnetic moment of the electron on spontaneous pair production in a strong magnetic field,” Phys. Rev. Lett., vol. 21, no. 11, p. 397, 1968. https://doi.org/10.1103/physrevlett.21.397.Suche in Google Scholar

[31] H. Y. Chiu and V. Canuto, “Problem of intense magnetic field in gravitational collapse,” Astrophys. J., vol. 153, no. 6, p. L157, 1968. https://doi.org/10.1086/180243.Suche in Google Scholar

[32] T. M. Tauris and R. N. Manchester, “On the evolution of pulsar beams,” Mon. Not. R. Astron. Soc., vol. 298, no. 1, p. 625, 1998. https://doi.org/10.1046/j.1365-8711.1998.01369.x.Suche in Google Scholar

[33] J. D. Jackson, Classical Electrodynamics, 2nd ed. New York, Wiley, 1975, p. 322.Suche in Google Scholar

[34] M. Ruderman, T. Zhu, and K. Chen, “Neutron star magnetic field evolution, crust movement, and glitches,” Astrophys. J., vol. 492, no. 11, p. 267, 1998. https://doi.org/10.1086/305026.Suche in Google Scholar

[35] S. Sengupta, “General relativistic effects on the induced electric field exterior to pulsars,” Astrophys. J., vol. 449, no. 7, p. 224, 1995. https://doi.org/10.1086/176049.Suche in Google Scholar

[36] I. Tomczak and J. Pétri, “Particle acceleration in neutron star ultra-strong electromagnetic fields,” J. Plasma Phys., vol. 86, no. 12, 2020, Art. no. 825860401. https://doi.org/10.1017/s0022377820000835.Suche in Google Scholar

[37] B. Carroll, et al.., “Oscillation spectra of neutron stars with strong magnetic fields,” Astrophys. J., vol. 305, no. 12, p. 767, 1986. https://doi.org/10.1086/164290.Suche in Google Scholar

[38] V. Rubakov, Classical Theory of Gauge Fields, 1st ed. Princeton NJ, Princeton U.P., 2002.Suche in Google Scholar

Received: 2024-04-01
Accepted: 2024-06-09
Published Online: 2024-07-16
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2024-0070/html
Button zum nach oben scrollen