Home Evolution of shock waves in dusty nonideal gas flow with magnetic field
Article
Licensed
Unlicensed Requires Authentication

Evolution of shock waves in dusty nonideal gas flow with magnetic field

  • Shweta EMAIL logo , Pradeep , Shobhit Kumar Srivastava ORCID logo and Lal Pratap Singh
Published/Copyright: March 7, 2024

Abstract

This paper deals with the study of propagation of shock waves in 2-D steady supersonic magnetogasdynamics flow of nonideal dusty gas using wavefront analysis method. We derived the transport equation, which determines the condition for the shock formation. Our aim is to analyze the effect of interaction of dust particles with magnetic field in nonideal gas on the evolution of shock formation and to examine how the flow patterns of the disturbance vary with respect to the variations in the physical parameters of the medium. It is found that the presence of magnetic field plays an essential role in the wave propagation phenomena. The nature of the solution with respect to the Mach number is analyzed, and it is examined how the shock formation distance changes with an increase or decrease in the value of Mach number. Also, the combined effect of nonidealness, magnetic field, and dust particles on the shock formation distance is elucidated and examined how the formation of shocks is affected by the increase in the value of corresponding physical parameters.


Corresponding author: Shweta, Department of Mathematical Sciences, 79203 Indian Institute of Technology, Banaras Hindu University , Varanasi 221005, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: The first author is thankful to the Department of Mathematical Sciences, IIT (BHU) for providing INSTITUTE fellowship.

  5. Data availability: No data associated in the manuscript.

References

[1] D. Zeidan and B. Bira, “Weak shock waves and its interaction with characteristic shocks in polyatomic gas,” Math. Methods Appl. Sci., vol. 42, no. 14, pp. 4679–4687, 2019. https://doi.org/10.1002/mma.5675.Search in Google Scholar

[2] C. Shen and M. Sun, “A distributional product approach to the delta shock wave solution for the one-dimensional zero-pressure gas dynamics system,” Int. J. Non Lin. Mech., vol. 105, pp. 105–112, 2018, https://doi.org/10.1016/j.ijnonlinmec.2018.06.008.Search in Google Scholar

[3] A. Tomar, R. Arora, and A. Chauhan, “Propagation of strong shock waves in a non-ideal gas,” Acta Astronaut., vol. 159, pp. 96–104, 2019, https://doi.org/10.1016/j.actaastro.2019.03.039.Search in Google Scholar

[4] P. Sahu, “Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field,” Chaos, Solit. Fractals, vol. 135, p. 109739, 2020, https://doi.org/10.1016/j.chaos.2020.109739.Search in Google Scholar

[5] S. Yadav, D. Singh, and R. Arora, “Propagation of cylindrical shock waves in rotational axisymmetric dusty gas with magnetic field: isothermal flow,” Phys. Fluids, vol. 33, no. 12, p. 127106, 2021. https://doi.org/10.1063/5.0065178.Search in Google Scholar

[6] Shweta, R. K. Chaturvedi, and L. Singh, “Shock wave solution for the planar, cylindrically, and spherically symmetric flows of non-ideal relaxing gas,” Chin. J. Phys., vol. 80, pp. 118–126, 2022, https://doi.org/10.1016/j.cjph.2022.07.002.Search in Google Scholar

[7] S. Yadav, D. Singh, and R. Arora, “Lie group of invariance technique for analyzing propagation of strong shock wave in a rotating non-ideal gas with azimuthal magnetic field,” Math. Methods Appl. Sci., vol. 45, no. 17, pp. 11889–11904, 2022. https://doi.org/10.1002/mma.8486.Search in Google Scholar

[8] T. Nath, R. Gupta, and L. Singh, “The progressive wave approach analyzing the evolution of shock waves in dusty gas,” Int. J. Appl. Comput. Math., vol. 3, no. 1, pp. 1217–1228, 2017. https://doi.org/10.1007/s40819-017-0412-7.Search in Google Scholar

[9] B. Bira, T. R. Sekhar, and G. R. Sekhar, “Collision of characteristic shock with weak discontinuity in non-ideal magnetogasdynamics,” Comput. Math. Appl., vol. 75, no. 11, pp. 3873–3883, 2018. https://doi.org/10.1016/j.camwa.2018.02.034.Search in Google Scholar

[10] D. Zeidan, S. Govekar, and M. Pandey, “Discontinuity wave interactions in generalized magnetogasdynamics,” Acta Astronaut., vol. 180, pp. 110–114, 2021, https://doi.org/10.1016/j.actaastro.2020.12.025.Search in Google Scholar

[11] P. Canupp, “The influence of magnetic fields for shock waves and hypersonic flows,” in 31st Plasmadynamics and Lasers Conference, 2000, p. 2260.10.2514/6.2000-2260Search in Google Scholar

[12] J. Giacalone and J. R. Jokipii, “Magnetic field amplification by shocks in turbulent fluids,” Astrophys. J., vol. 663, no. 1, p. L41, 2007. https://doi.org/10.1086/519994.Search in Google Scholar

[13] L. Singh, A. Husain, and M. Singh, “A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics,” Meccanica, vol. 46, no. 2, pp. 437–445, 2011. https://doi.org/10.1007/s11012-010-9325-9.Search in Google Scholar

[14] G. Nath, P. Sahu, and S. Chaurasia, “Self-similar solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with magnetic field,” Chin. J. Phys., vol. 58, pp. 280–293, 2019, https://doi.org/10.1016/j.cjph.2019.02.007.Search in Google Scholar

[15] P. Gupta, R. K. Chaturvedi, and L. Singh, “Interaction of waves in one-dimensional dusty gas flow,” Z. Naturforsch. A, vol. 76, no. 3, pp. 201–208, 2021. https://doi.org/10.1515/zna-2020-0061.Search in Google Scholar

[16] Shweta, R. K. Chaturvedi, S. K. Srivastava, and L. Singh, “Evolution of weak discontinuity waves in non-ideal interstellar environments,” J. Astron. Astrophys., vol. 44, no. 1, p. 49, 2023. https://doi.org/10.1007/s12036-023-09943-x.Search in Google Scholar

[17] R. K. Chaturvedi, P. Gupta, and L. Singh, “Evolution of weak shock wave in two-dimensional steady supersonic flow in dusty gas,” Acta Astronaut., vol. 160, pp. 552–557, 2019, https://doi.org/10.1016/j.actaastro.2019.02.021.Search in Google Scholar

[18] P. Gupta and L. Singh, “On the evolution of magnetic shock wave in the mixture of gas and small solid dust particles,” Chin. J. Phys., vol. 77, pp. 1912–1926, 2022, https://doi.org/10.1016/j.cjph.2021.12.027.Search in Google Scholar

[19] A. Chauhan and R. Arora, “Self-similar solutions of cylindrical shock wave in a dusty gas,” Indian J. Phys., vol. 94, no. 5, pp. 665–673, 2020. https://doi.org/10.1007/s12648-019-01499-3.Search in Google Scholar

[20] G. Nath and A. Devi, “Similarity solution using group theoretic method for unsteady flow behind shock wave in a self-gravitating dusty gas,” Int. J. Non Lin. Mech., vol. 148, p. 104254, 2022, https://doi.org/10.1016/j.ijnonlinmec.2022.104254.Search in Google Scholar

[21] D. Amin, D. Singh, and V. K. Vats, “Strong shock waves in a dusty-gas atmosphere under isothermal conditions: a power series solution,” Int. J. Appl. Comput. Math., vol. 7, no. 5, pp. 1–20, 2021. https://doi.org/10.1007/s40819-021-01111-5.Search in Google Scholar

[22] K. Sharma, R. Arora, A. Chauhan, and A. Tiwari, “Propagation of waves in a nonideal magnetogasdynamics with dust particles,” Z. Naturforsch. A, vol. 75, no. 3, pp. 193–200, 2020. https://doi.org/10.1515/zna-2019-0255.Search in Google Scholar

[23] S. K. Srivastava, R. K. Chaturvedi, and L. P. Singh, “On the evolution of acceleration discontinuities in van der waals dusty magnetogasdynamics,” Z. Naturforsch. A, vol. 76, no. 5, pp. 435–443, 2021. https://doi.org/10.1515/zna-2020-0351.Search in Google Scholar

[24] J. Vishwakarma, G. Nath, and R. K. Srivastava, “Self-similar solution for cylindrical shock waves in a weakly conducting dusty gas,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1717–1730, 2018. https://doi.org/10.1016/j.asej.2016.09.013.Search in Google Scholar

[25] G. Nath, “Propagation of ionizing shock wave in a dusty gas medium under the influence of gravitational and azimuthal magnetic fields,” Phys. Fluids, vol. 34, no. 8, p. 083307, 2022. https://doi.org/10.1063/5.0094327.Search in Google Scholar

[26] J. Vishwakarma and P. Lata, “Similarity solution for unsteady flow behind an exponential shock in a perfectly conducting dusty gas,” J. Rajastan Acad. Phys. Sci., vol. 17, no. 1–2, pp. 65–80, 2018.Search in Google Scholar

[27] P. Sahu, “Flow behind the magnetogasdynamical cylindrical shock wave in rotating non-ideal dusty gas with monochromatic radiation,” Plasma Res. Express, vol. 3, no. 4, p. 045004, 2021. https://doi.org/10.1088/2516-1067/ac3c4d.Search in Google Scholar

[28] G. Nath, “A self-similar solution for shock waves in conducting rotating non-ideal dusty gas medium with monochromatic radiation and magnetic field,” Z. Naturforsch. A, vol. 77, no. 4, pp. 379–401, 2022. https://doi.org/10.1515/zna-2021-0292.Search in Google Scholar

[29] J. Vishwakarma and G. Nath, “A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles,” Meccanica, vol. 44, no. 3, pp. 239–254, 2009, https://doi.org/10.1007/s11012-008-9166-y.Search in Google Scholar

[30] J. Vishwakarma, S. Vishwakarma, and A. Sharma, “Self-similar flow of a mixture of a non-ideal gas and small solid particles with increasing energy behind a shock wave,” Modelling, Measurement & Control. B, Solid & Fluid Mechanics & Thermics, Mechanical Systems, vol. 76, pp. 62–75, 2007.Search in Google Scholar

[31] S. Pai, S. Menon, and Z. Fan, “Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles,” Int. J. Eng. Sci., vol. 18, no. 12, pp. 1365–1373, 1980. https://doi.org/10.1016/0020-7225(80)90093-2.Search in Google Scholar

[32] M. Chadha and J. Jena, “Self-similar solutions and converging shocks in a non-ideal gas with dust particles,” Int. J. Non Lin. Mech., vol. 65, pp. 164–172, 2014, https://doi.org/10.1016/j.ijnonlinmec.2014.05.013.Search in Google Scholar

[33] S. K. Srivastava, R. K. Chaturvedi, and L. Singh, “On the evolution of finite and small amplitude waves in non-ideal gas with dust particles,” Phys. Scr., vol. 95, no. 6, p. 065205, 2020, https://doi.org/10.1088/1402-4896/ab7fec.Search in Google Scholar

[34] L. Singh, V. Sharma, and N. Gupta, “Wave propagation in a steady supersonic flow of a radiating gas past plane and axisymmetric bodies,” Acta Mech., vol. 73, pp. 213–220, 1988, https://doi.org/10.1007/bf01177040.Search in Google Scholar

[35] A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, London, Pitman, 1976.Search in Google Scholar

[36] H. Schmitt, “Entstehung von verdichtungsstößen in strahlenden gasen,” Z. Angew. Math. Mech., vol. 52, no. 9, pp. 529–534, 1972. https://doi.org/10.1002/zamm.19720520905.Search in Google Scholar

[37] Pradeep, R. K. Chaturvedi, and L. Singh, “The effect of dust particles on the evolution of planar and non-planar shock wave in two-dimensional supersonic flow of van der waals gas,” Eur. Phys. J. Plus, vol. 137, no. 2, pp. 1–12, 2022. https://doi.org/10.1140/epjp/s13360-022-02437-9.Search in Google Scholar

Received: 2023-09-18
Accepted: 2024-02-04
Published Online: 2024-03-07
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0254/html?lang=en
Scroll to top button