Startseite Influence of Mn doping on electrical properties of TiO2/Si heterojunction diode
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Mn doping on electrical properties of TiO2/Si heterojunction diode

  • Silan Baturay EMAIL logo , Omer Bicer , Serap Yigit Gezgin , Ilhan Candan , Hadice Budak Gumgum und Hamdi Sukur Kilic
Veröffentlicht/Copyright: 27. März 2023

Abstract

In this special work, two types of material, which are undoped and Mn doped TiO2 thin films, have been produced by spin coating technique, and then their structural, morphological and optical properties have been measured at different Mn doping rates. Four different doping ratios, undoped, 1, 3 and 5% Mn doped TiO2 have been both experimentally and theoretically investigated and some significant enhancements have been reported. The results of X-ray diffraction (XRD) such as dislocation density, strain, and crystallite size have indicated that undoped, 1, 3 and 5% Mn doped TiO2 thin films had the phase of anatase at 450 °C. It has been observed that the peak intensity of 3% Mn doped TiO2 films has decreased compared to undoped and 1% Mn doped TiO2 while the peak intensity has increased for 5% Mn doped TiO2. The refractive indices and dielectric coefficients of the undoped and Mn doped TiO2 thin films have also been calculated. The undoped and Mn doped TiO2/p-Si heterojunction diodes has exhibited photosensitive behaviour in the illuminated environment. 1% Mn doped TiO2/p-Si heterojunction diode indicated the highest photocurrent. The electrical parameters of all diodes have been calculated and compared to the conventional JV and Norde methods. Additionally, 1% Mn doped TiO2/p-Si heterojunction diode has been modelled by using the SCAPS-1D program, and J ph values have also been calculated based on the shallow donor density (N D ). The experimental and theoretical J ph values of this diode were found to be compatible with each other.


Corresponding author: Silan Baturay, Department of Physics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye, E-mail:

Acknowledgements

Authors would kindly like to thank to – Selcuk University, Scientific Research Projects (BAP) Coordination Office for the support with the number 15201070 and 19401140 projects, – Selçuk University, High Technology Research and Application Center (İL-TEK) and – SULTAN Center for infrastructures – Dicle University Scientific Research Project (BAP) Coordination office – Dr. Marc Burgelman’s group, University of Gent, Belgium for providing permission for us to use SCAPS-1D simulation program

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors have no relevant financial or non-financial interests to disclose.

References

[1] Z. Wang, U. Helmersson, and P.-O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature,” Thin Solid Films, vol. 405, nos. 1–2, pp. 50–54, 2002. https://doi.org/10.1016/s0040-6090(01)01767-9.Suche in Google Scholar

[2] H. Bach and D. Krause, Thin Films on Glass, New York, Springer Science & Business Media, 2013.Suche in Google Scholar

[3] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensor. Actuator. B Chem., vol. 68, nos. 1–3, pp. 189–196, 2000. https://doi.org/10.1016/s0925-4005(00)00428-7.Suche in Google Scholar

[4] A. R. Malagutti, H. A. Mourao, J. R. Garbin, and C. Ribeiro, “Deposition of TiO2 and Ag: TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes,” Appl. Catal. B Environ., vol. 90, nos. 1–2, pp. 205–212, 2009. https://doi.org/10.1016/j.apcatb.2009.03.014.Suche in Google Scholar

[5] M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, and I. Willner, “Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors,” Anal. Chem., vol. 73, no. 3, pp. 720–723, 2001. https://doi.org/10.1021/ac000751j.Suche in Google Scholar PubMed

[6] R. S. Mane, W. J. Lee, H. M. Pathan, and S.-H. Han, “Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, no. 51, pp. 24254–24259, 2005. https://doi.org/10.1021/jp0531560.Suche in Google Scholar PubMed

[7] H. Choi, E. Stathatos, and D. D. Dionysiou, “Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications,” Appl. Catal. B Environ., vol. 63, nos. 1–2, pp. 60–67, 2006. https://doi.org/10.1016/j.apcatb.2005.09.012.Suche in Google Scholar

[8] L. Francioso, D. Presicce, A. Taurino, R. Rella, P. Siciliano, and A. Ficarella, “Automotive application of sol–gel TiO2 thin film-based sensor for lambda measurement,” Sensor. Actuator. B Chem., vol. 95, nos. 1–3, pp. 66–72, 2003. https://doi.org/10.1016/s0925-4005(03)00405-2.Suche in Google Scholar

[9] D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, “Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating,” Mater. Lett., vol. 57, no. 2, pp. 355–360, 2002. https://doi.org/10.1016/s0167-577x(02)00790-5.Suche in Google Scholar

[10] D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci., vol. 156, nos. 1–4, pp. 200–206, 2000. https://doi.org/10.1016/s0169-4332(99)00508-5.Suche in Google Scholar

[11] J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films, vol. 305, nos. 1–2, pp. 270–273, 1997. https://doi.org/10.1016/s0040-6090(97)00135-1.Suche in Google Scholar

[12] G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films, vol. 342, nos. 1–2, pp. 83–92, 1999. https://doi.org/10.1016/s0040-6090(98)01407-2.Suche in Google Scholar

[13] A. Elfanaoui, E. Elhamri, L. Boulkaddat, et al.., “Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating,” Int. J. Hydrogen Energy, vol. 36, no. 6, pp. 4130–4133, 2011. https://doi.org/10.1016/j.ijhydene.2010.07.057.Suche in Google Scholar

[14] S. Baturay, I. Candan, and C. Ozaydın, “Structural, optical, and electrical characterizations of Cr-doped CuO thin films,” J. Mater. Sci. Mater. Electron., vol. 33, no. 9, pp. 7275–7287, 2022. https://doi.org/10.1007/s10854-022-07918-2.Suche in Google Scholar

[15] C. Firdaus, M. S. Rizam, M. Rusop, and S. R. Hidayah, “Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique,” Procedia Eng., vol. 41, pp. 1367–1373, 2012. https://doi.org/10.1016/j.proeng.2012.07.323.Suche in Google Scholar

[16] P. Malliga, J. Pandiarajan, N. Prithivikumaran, and K. Neyvasagam, “Influence of film thickness on structural and optical properties of sol–gel spin coated TiO2 thin film,” J. Appl. Phys., vol. 6, pp. 22–28, 2014. https://doi.org/10.9790/4861-06112228.Suche in Google Scholar

[17] A. Phani and S. Santucci, “Structural characterization of nickel titanium oxide synthesized by sol–gel spin coating technique,” Thin Solid Films, vol. 396, nos. 1–2, pp. 1–4, 2001. https://doi.org/10.1016/s0040-6090(01)01131-2.Suche in Google Scholar

[18] A. Kumar, A. R. Madaria, and C. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C, vol. 114, no. 17, pp. 7787–7792, 2010. https://doi.org/10.1021/jp100491h.Suche in Google Scholar

[19] T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda, and M. Inagaki, “Composites between photoactive anatase-type TiO2 and adsorptive carbon,” Appl. Surf. Sci., vol. 196, nos. 1–4, pp. 429–436, 2002. https://doi.org/10.1016/s0169-4332(02)00081-8.Suche in Google Scholar

[20] H. Tang, K. Prasad, R. Sanjines, P. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, no. 4, pp. 2042–2047, 1994. https://doi.org/10.1063/1.356306.Suche in Google Scholar

[21] J. Xu, C. Jia, B. Cao, and W. Zhang, “Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries,” Electrochim. Acta, vol. 52, no. 28, pp. 8044–8047, 2007. https://doi.org/10.1016/j.electacta.2007.06.077.Suche in Google Scholar

[22] M. Subramanian, S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, “Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process,” Thin Solid Films, vol. 516, no. 12, pp. 3776–3782, 2008. https://doi.org/10.1016/j.tsf.2007.06.125.Suche in Google Scholar

[23] L. Mai, C. Huang, D. Wang, Z. Zhang, and Y. Wang, “Effect of C doping on the structural and optical properties of sol–gel TiO2 thin films,” Appl. Surf. Sci., vol. 255, no. 22, pp. 9285–9289, 2009. https://doi.org/10.1016/j.apsusc.2009.07.027.Suche in Google Scholar

[24] S. B. Aydin, D. E. Yildiz, H. K. Çavuş, and R. Şahingöz, “ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode,” Bull. Mater. Sci., vol. 37, no. 7, pp. 1563–1568, 2014. https://doi.org/10.1007/s12034-014-0726-6.Suche in Google Scholar

[25] H. Gullu and D. Yildiz, “Capacitance, conductance, and dielectric characteristics of Al/TiO2/Si diode,” J. Mater. Sci. Mater. Electron., vol. 32, no. 10, pp. 13549–13567, 2021. https://doi.org/10.1007/s10854-021-05931-5.Suche in Google Scholar

[26] D. Tiwari, C. Lalhriatpuia, S.-M. Lee, S.-H. Kong, and S. H. Kong, “Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions,” Appl. Surf. Sci., vol. 353, pp. 275–283, 2015. https://doi.org/10.1016/j.apsusc.2015.06.131.Suche in Google Scholar

[27] C. Lin, D. Channei, P. Koshy, A. Nakaruk, and C. Sorrell, “Multivalent Mn-doped TiO2 thin films,” Phys. E Low-dimens. Syst. Nanostruct., vol. 44, no. 10, pp. 1969–1972, 2012. https://doi.org/10.1016/j.physe.2012.05.009.Suche in Google Scholar

[28] A. C. Piñón Reyes, R. C. Ambrosio Lazaro, K. Monfil Leyva, et al.., “Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation,” Micromachines, vol. 12, no. 12, p. 1508, 2021. https://doi.org/10.3390/mi12121508.Suche in Google Scholar PubMed PubMed Central

[29] T. AlZoubi, A. Moghrabi, M. Moustafa, and S. Yasin, “Efficiency boost of CZTS solar cells based on double-absorber architecture: device modeling and analysis,” Sol. Energy, vol. 225, pp. 44–52, 2021. https://doi.org/10.1016/j.solener.2021.07.012.Suche in Google Scholar

[30] S. Y. Gezgin, İ. Candan, Ş. Baturay, and H. Ş. Kılıç, “Modelling of the solar cell based on Cu2SnS3 thin film produces by spray pyrolysis,” J. Middle East J. Sci., vol. 8, no. 1, pp. 64–76, 2022.10.51477/mejs.1105297Suche in Google Scholar

[31] A. Houimi, S. Y. Gezgin, B. Mercimek, and H. Ş. Kılıç, “Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs,” Opt. Mater., vol. 121, 2021, Art. no. 111544. https://doi.org/10.1016/j.optmat.2021.111544.Suche in Google Scholar

[32] S. Y. Gezgin, “Modelling and investigation of the electrical properties of CIGS/n-Si heterojunction solar cells,” Opt. Mater., vol. 131, 2022, Art. no. 112738. https://doi.org/10.1016/j.optmat.2022.112738.Suche in Google Scholar

[33] J. Shao and D. Tu, The Jackknife and Bootstrap, New York, Springer Science & Business Media, 2012.Suche in Google Scholar

[34] L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol., vol. 18, no. 6, pp. 2619–2645, 2000. https://doi.org/10.1116/1.1314395.Suche in Google Scholar

[35] R. Marnadu, J. Chandrasekaran, P. Vivek, V. Balasubramani, and S. Maruthamuthu, “Impact of phase transformation in WO3 thin films at higher temperature and its compelling interfacial role in Cu/WO3/p–Si structured Schottky barrier diodes,” Z. Phys. Chem., vol. 234, no. 2, pp. 355–379, 2020. https://doi.org/10.1515/zpch-2018-1289.Suche in Google Scholar

[36] V. Mahalakshmi, D. Venugopal, K. Ramachandran, and R. Ramesh, Synthesis of 2D-CZTS Nanoplate as Photocathode Material for Efficient PEC Water Splitting, New York, Springer, 2021.10.21203/rs.3.rs-187634/v1Suche in Google Scholar

[37] S. Chamekh, N. Khemiri, and M. Kanzari, “Effect of annealing under different atmospheres of CZTS thin films as absorber layer for solar cell application,” SN Appl. Sci., vol. 2, no. 9, pp. 1–8, 2020. https://doi.org/10.1007/s42452-020-03287-9.Suche in Google Scholar

[38] J. Yu, X. Zhao, and Q. Zhao, “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method,” Mater. Chem. Phys., vol. 69, nos. 1–3, pp. 25–29, 2001. https://doi.org/10.1016/s0254-0584(00)00291-1.Suche in Google Scholar

[39] A. Nakaruk, C. Lin, D. Channei, P. Koshy, and C. Sorrell, “Fe-doped and Mn-doped titanium dioxide thin films,” J. Sol. Gel Sci. Technol., vol. 61, no. 1, pp. 175–178, 2012. https://doi.org/10.1007/s10971-011-2607-4.Suche in Google Scholar

[40] S. Y. Gezgin, A. Kepceoğlu, and H. Ş. Kılıç, “An investigation of localised surface plasmon resonance (LSPR) of Ag nanoparticles produced by pulsed laser deposition (PLD) technique AIP conference proceedings,” AIP Publishing LLC, vol. 1815, no. 1, 2017, Art. no. 030019.10.1063/1.4976367Suche in Google Scholar

[41] M. Rahman, K. Krishna, T. Soga, T. Jimbo, and M. Umeno, “Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films,” J. Phys. Chem. Solid., vol. 60, no. 2, pp. 201–210, 1999. https://doi.org/10.1016/s0022-3697(98)00264-9.Suche in Google Scholar

[42] R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E Sci. Instrum., vol. 17, no. 10, p. 896, 1984. https://doi.org/10.1088/0022-3735/17/10/023.Suche in Google Scholar

[43] A. Hegazy and E. Prouzet, “Room temperature synthesis and thermal evolution of porous nanocrystalline TiO2 anatase,” Chem. Mater., vol. 24, no. 2, pp. 245–254, 2012. https://doi.org/10.1021/cm201602a.Suche in Google Scholar

[44] M. Niu, W. Xu, X. Shao, and D. Cheng, “Enhanced photoelectrochemical performance of rutile TiO2 by Sb-N donor-acceptor coincorporation from first principles calculations,” Appl. Phys. Lett., vol. 99, no. 20, 2011, Art. no. 203111. https://doi.org/10.1063/1.3662968.Suche in Google Scholar

[45] Z. Su and W. Zhou, “Formation, morphology control and applications of anodic TiO2 nanotube arrays,” J. Mater. Chem., vol. 21, no. 25, pp. 8955–8970, 2011. https://doi.org/10.1039/c0jm04587j.Suche in Google Scholar

[46] X. Xia, L. Lu, A. Walton, et al.., “Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films,” Acta Mater., vol. 60, no. 5, pp. 1974–1985, 2012. https://doi.org/10.1016/j.actamat.2012.01.006.Suche in Google Scholar

[47] T. Moss, Photoconductivity in the Elements, London, Ohio State University, 1952.Suche in Google Scholar

[48] N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap–refractive index relations in semiconductors–An overview,” Infrared Phys. Technol., vol. 50, no. 1, pp. 21–29, 2007. https://doi.org/10.1016/j.infrared.2006.04.001.Suche in Google Scholar

[49] P. Herve and L. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Phys. Technol., vol. 35, no. 4, pp. 609–615, 1994. https://doi.org/10.1016/1350-4495(94)90026-4.Suche in Google Scholar

[50] N. A. Bakr, Z. T. Khodair, and H. I. Mahdi, “Influence of thiourea concentration on some physical properties of chemically sprayed Cu2ZnSnS4 thin films,” Int. J. Mater. Sci. Appl., vol. 5, no. 6, pp. 261–270, 2016.10.11648/j.ijmsa.20160506.15Suche in Google Scholar

[51] R. Su, Z. Xu, J. Wu, et al.., “Dielectric screening in perovskite photovoltaics,” Nat. Commun., vol. 12, no. 1, pp. 1–11, 2021. https://doi.org/10.1038/s41467-021-22783-z.Suche in Google Scholar PubMed PubMed Central

[52] S. Yiğit Gezgin and H. Ş. Kiliç, “The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling,” Indian J. Phys., vol. 97, pp. 1–18, 2022. https://doi.org/10.1007/s12648-022-02453-6.Suche in Google Scholar

[53] S. Islam, M. Rahaman, M. A. Gafur, M. K. Hossain, F. Ahmed, and M. Abul, “Synthesis and characterization of copper-zinc-tin-sulfide (CZTS) thin film absorber layer for solar cell application,” J. Mater. Sci. Eng., vol. 8, nos. 9–10, pp. 198–203, 2018.10.17265/2161-6213/2018.9-10.004Suche in Google Scholar

[54] R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, and R. Suresh, “Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application,” Appl. Surf. Sci., vol. 480, pp. 308–322, 2019. https://doi.org/10.1016/j.apsusc.2019.02.214.Suche in Google Scholar

[55] M. Fadavieslam and S. Keshavarz, “Effects of growth temperatures on the physical properties of Cu2ZnSnS4 thin films deposited through spray pyrolysis for solar cell applications,” Appl. Phys. A, vol. 124, no. 2, pp. 1–6, 2018. https://doi.org/10.1007/s00339-018-1591-8.Suche in Google Scholar

[56] N. E. Koksal, M. Sbeta, and A. Yildiz, “GZO/Si photodiodes exhibiting high photocurrent-to-dark-current ratio,” IEEE Trans. Electron. Dev., vol. 66, no. 5, pp. 2238–2242, 2019. https://doi.org/10.1109/ted.2019.2903600.Suche in Google Scholar

[57] D. Glowienka and Y. Galagan, “Light intensity analysis of photovoltaic parameters for perovskite solar cells,” Adv. Mater., vol. 34, no. 2, 2022, Art. no. 2105920. https://doi.org/10.1002/adma.202105920.Suche in Google Scholar PubMed

[58] M. Buscema, J. O. Island, D. J. Groenendijk, et al.., “Photocurrent generation with two-dimensional van der Waals semiconductors,” Chem. Soc. Rev., vol. 44, no. 11, pp. 3691–3718, 2015. https://doi.org/10.1039/c5cs00106d.Suche in Google Scholar PubMed

[59] H. Elsaeedy, A. Qasem, H. Yakout, and M. Mahmoud, “The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell,” J. Alloys Compd., vol. 867, 2021, Art. no. 159150. https://doi.org/10.1016/j.jallcom.2021.159150.Suche in Google Scholar

[60] A. Boutelala, F. Bourfa, and M. Mahtali, “Effect of light on electrical and photoelectrical characteristics of Al/TiO2/p-Si Schottky diode,” J. Mater. Sci. Mater. Electron., vol. 31, no. 14, pp. 11379–11389, 2020. https://doi.org/10.1007/s10854-020-03687-y.Suche in Google Scholar

[61] S. Y. Gezgin, A. Kepceoğlu, A. Toprak, and H. Ş. Kılıç, “Investigation of conversion efficiency of n-ZnO/p-Si heterojunction device produced by pulsed laser deposition (PLD),” Mater. Today Proc., vol. 18, pp. 1996–2002, 2019. https://doi.org/10.1016/j.matpr.2019.06.691.Suche in Google Scholar

[62] T. M. Pletzer, J. I. van Mölken, S. Rißland, O. Breitenstein, and J. Knoch, “Influence of cracks on the local current–voltage parameters of silicon solar cells,” Prog. Photovoltaics Res. Appl., vol. 23, no. 4, pp. 428–436, 2015. https://doi.org/10.1002/pip.2443.Suche in Google Scholar

[63] R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, and P. Balraju, “Influence of metal work function and incorporation of Sr atom on WO3 thin films for MIS and MIM structured SBDs,” Superlattice. Microst., vol. 119, pp. 134–149, 2018. https://doi.org/10.1016/j.spmi.2018.04.049.Suche in Google Scholar

[64] Ş. Karataş and F. Yakuphanoğlu, “Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode,” Mater. Chem. Phys., vol. 138, no. 1, pp. 72–77, 2013. https://doi.org/10.1016/j.matchemphys.2012.10.038.Suche in Google Scholar

[65] M. Raj, C. Joseph, M. Subramanian, V. Perumalsamy, and V. Elayappan, “Superior photoresponse MIS Schottky barrier diodes with nanoporous: Sn–WO3 films for ultraviolet photodetector application,” New J. Chem., vol. 44, no. 19, pp. 7708–7718, 2020. https://doi.org/10.1039/d0nj00101e.Suche in Google Scholar

[66] R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, and V. Balasubramani, “Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WO x) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes,” J. Mater. Sci. Mater. Electron., vol. 29, pp. 2618–2627, 2018. https://doi.org/10.1007/s10854-017-8187-5.Suche in Google Scholar

[67] H. Shen, S. T. Omelchenko, D. A. Jacobs, et al.., “In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells,” Sci. Adv., vol. 4, no. 12, p. eaau9711, 2018. https://doi.org/10.1126/sciadv.aau9711.Suche in Google Scholar PubMed PubMed Central

[68] F. Bedia, A. Bedia, B. Benyoucef, and S. Hamzaoui, “Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique,” Phys. Procedia, vol. 55, pp. 61–67, 2014. https://doi.org/10.1016/j.phpro.2014.07.010.Suche in Google Scholar

[69] H. Soliman, A. Farag, N. Khosifan, and M. El-Nahass, “Electrical transport mechanisms and photovoltaic characterization of cobalt phthalocyanine on silicon heterojunctions,” Thin Solid Films, vol. 516, no. 23, pp. 8678–8683, 2008. https://doi.org/10.1016/j.tsf.2008.04.102.Suche in Google Scholar

[70] S. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, and Ş. Altındal, “Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8340–8347, 2016. https://doi.org/10.1007/s10854-016-4843-4.Suche in Google Scholar

[71] O. Ongun, E. Taşcı, M. Emrullahoğlu, Ü. Akın, N. Tuğluoğlu, and S. Eymur, “Fabrication, illumination dependent electrical and photovoltaic properties of Au/BOD-Pyr/n-Si/In Schottky diode,” J. Mater. Sci. Mater. Electron., vol. 32, no. 12, pp. 15707–15717, 2021. https://doi.org/10.1007/s10854-021-06122-y.Suche in Google Scholar

[72] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, no. 7, pp. 5052–5053, 1979. https://doi.org/10.1063/1.325607.Suche in Google Scholar

[73] S. yiğit gezgin, A. Houimi, and H. Ş. kiliç, “Comparison of electrical and photovoltaic parameters of the hetero-junction solar cells based on CZTS and CIGS ultrathin films,” Mater. Technol., vol. 37, no. 10, pp. 1573–1585, 202. https://doi.org/10.1080/10667857.2021.1964215.Suche in Google Scholar

[74] N. Basman, “Effect of a new methacrylic monomer on diode parameters of Ag/p-Si Schottky contact,” Inf. MIDEM, vol. 46, no. 4, pp. 190–196, 2017.Suche in Google Scholar

[75] İ. Orak, A. Kocyiğit, and Ş. Karataş, “The analysis of the electrical and photovoltaic properties of Cr/p-Si structures using current-voltage measurements,” Silicon, vol. 10, no. 5, pp. 2109–2116, 2018. https://doi.org/10.1007/s12633-017-9731-x.Suche in Google Scholar

[76] S. Cheung and N. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett., vol. 49, no. 2, pp. 85–87, 1986. https://doi.org/10.1063/1.97359.Suche in Google Scholar

[77] M. A. Basyooni, W. Belaid, A. Houimi, et al.., “Observation of negative photoresponse in joule-heated Au/Cu2SnS3 ternary chalcogenide thin film deposited by low energy pulsed laser deposition,” Opt. Mater., vol. 128, 2022, Art. no. 112389. https://doi.org/10.1016/j.optmat.2022.112389.Suche in Google Scholar

[78] S. Y. Gezgin and H. Ş. Kiliç, “The effect of Ag and Au contacts on the efficiency of CZTS/n-Si solar cell: the confirmation of experimental and theoretical results by SCAPS simulation,” Braz. J. Phys., vol. 52, no. 4, p. 148, 2022. https://doi.org/10.1007/s13538-022-01145-0.Suche in Google Scholar

[79] N. A. Mahammedi, H. Gueffaf, B. Lagoun, and M. Ferhat, “Numerical simulation and optimization of a silicon clathrate-based solar cell n-Si136/p-Si2 using SCAPS-1D program,” Opt. Mater., vol. 107, 2020, Art. no. 110043. https://doi.org/10.1016/j.optmat.2020.110043.Suche in Google Scholar

[80] E. Ghorbani, “On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment,” J. Phys.: Energy, vol. 2, no. 2, 2020, Art no. 025002. https://doi.org/10.1088/2515-7655/ab6942.Suche in Google Scholar

[81] M. Gansukh, Z. Li, M. E. Rodriguez, et al.., “Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTS,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020. https://doi.org/10.1038/s41598-020-73828-0.Suche in Google Scholar PubMed PubMed Central

[82] G. Xosrovashvili and N. E. Gorji, “Numerical simulation of carbon nanotubes/GaAs hybrid PV devices with AMPS-1D,” Int. J. Photoenergy, vol. 2014, no. 1, 2014. https://doi.org/10.1155/2014/784857.Suche in Google Scholar

[83] H. Yao and L. Liu, “Design and optimize the performance of self-powered photodetector based on PbS/TiS3 heterostructure by SCAPS-1D,” Nanomaterials, vol. 12, no. 3, p. 325, 2022. https://doi.org/10.3390/nano12030325.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zna-2023-0015).


Received: 2023-01-21
Accepted: 2023-03-01
Published Online: 2023-03-27
Published in Print: 2023-06-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0015/html?lang=de
Button zum nach oben scrollen