Abstract
The propagation of nonlinear electrostatic ion-acoustic (IA) shock waves in presence of external magnetic field having Cairns–Tsallis distributed electrons and ion kinematic viscosity is investigated. In the linear regime, the dispersion relation of the ion acoustic shock wave is found to be modified by the external magnetic field. Adopting reductive perturbation approach, it is shown that the dynamics of shocks is modeled by a hybrid Ostrovsky–Burgers’ equation. The influence of relevant physical parameters such as nonthermality and nonextensivity of electrons, magnetic field strength, and ion kinematic viscosity on the time evolution of the shock structure is numerically examined. It is observed the present plasma system supports both compressive and rarefactive shock waves. Furthermore, the analysis is performed through dynamical system approach to elucidate the various aspects of the phase-space shock dynamics.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
The distribution function in the presence of a nonzero potential can simply be found by replacing
Here, we have given the detailed derivation of the electron density.
Case I: −1 < q < 1.
Using the following variable change
we obtain
Using the expression of C q,α given in Eq. (5), we obtain
Case II: q > 1.
Proceeding as in case I, we also obtain.
References
[1] S. V. Vladimirov and M. Y. Yu, “Nonlinear ion-acoustic waves in a collisional plasma,” Phys. Rev. E, vol. 48, p. 2136, 1993. https://doi.org/10.1103/physreve.48.2136.Search in Google Scholar PubMed
[2] W. Masood, N. Jehan, A. M. Mirza, and P. H. Sakana, “Planar and non-planar ion acoustic shock waves in electron-positron-ion plasmas,” Phys. Lett. A, vol. 372, p. 4279, 2008. https://doi.org/10.1016/j.physleta.2008.03.058.Search in Google Scholar
[3] R. A. Sumi, I. Tasnim, M. G. M. Anowar, and A. A. Mamun, “Dust-acoustic shock waves in a plasma system with opposite polarity dust fluids and trapped ions,” J. Plasma Phys., vol. 85, p. 905850611, 2019. https://doi.org/10.1017/s0022377819000825.Search in Google Scholar
[4] Y. Nakamura, H. Bailung, and P. K. Shukla, “Observation of ion-acoustic shocks in a dusty plasma,” Phys. Rev. Lett., vol. 83, p. 1602, 1999. https://doi.org/10.1103/physrevlett.83.1602.Search in Google Scholar
[5] H. Heinrich, S. H. Kim, and R. L. Merlino, “Laboratory observations of self-excited dust acoustic shocks,” Phys. Rev. Lett., vol. 103, p. 115002, 2009. https://doi.org/10.1103/physrevlett.103.115002.Search in Google Scholar
[6] S. D. Bale, M. A. Balikhin, T. S. Horbury, et al.., “Quasi-perpendicular shock structure and processes,” Space Sci. Rev., vol. 118, p. 161, 2005. https://doi.org/10.1007/s11214-005-3827-0.Search in Google Scholar
[7] R. M. Kulsrud, J. P. Ostriker, and J. E. Gunn, “Acceleration of cosmic rays in supernova remnants,” Phys. Rev. Lett., vol. 28, p. 636, 1972. https://doi.org/10.1103/physrevlett.28.636.Search in Google Scholar
[8] Y. Uchiyama, F. A. Aharonian, T. Tanaka, T. Takahashi, and Y. Maeda, “Extremely fast acceleration of cosmic rays in a supernova remnant,” Nature, vol. 449, p. 576, 2007. https://doi.org/10.1038/nature06210.Search in Google Scholar PubMed
[9] E. Lee, G. K. Parks, M. Wilbr, and N. Lin, “Nonlinear development of shocklike structure in the solar wind,” Phys. Rev. Lett., vol. 103, p. 031101, 2009. https://doi.org/10.1103/physrevlett.103.031101.Search in Google Scholar
[10] R. Blandford and D. Eichler, “Particle acceleration at astrophysical shocks: a theory of cosmic ray origin,” Phys. Rep., vol. 154, p. 1, 1987. https://doi.org/10.1016/0370-1573(87)90134-7.Search in Google Scholar
[11] J. D. Lindl, P. Amendt, R. L. Berger, et al.., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas, vol. 11, p. 339, 2004. https://doi.org/10.1063/1.1578638.Search in Google Scholar
[12] G. Federici, C. H. Skinner, J. N. Brooks, et al.., “Plasma-material interactions in current tokamaks and their implications for next step fusion reactors,” Nucl. Fusion, vol. 41, p. 1967, 2001. https://doi.org/10.1088/0029-5515/41/12/218.Search in Google Scholar
[13] C. Nurenberg, “Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7–X,” Phys. Plasmas, vol. 3, p. 2401, 1996.10.1063/1.871924Search in Google Scholar
[14] D. D. Ryutov, M. S. Derzon, and M. K. Matzen, “The physics of fastZpinches,” Rev. Mod. Phys., vol. 72, p. 167, 2000. https://doi.org/10.1103/revmodphys.72.167.Search in Google Scholar
[15] T. Ott and M. Bonitz, “Diffusion in a strongly coupled magnetized plasma,” Phys. Rev. Lett., vol. 107, p. 135003, 2011. https://doi.org/10.1103/physrevlett.107.135003.Search in Google Scholar PubMed
[16] M. Khalid and A. U. Rahman, “Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy,” Astrophys. Space Sci., vol. 364, p. 28, 2019. https://doi.org/10.1007/s10509-019-3517-0.Search in Google Scholar
[17] M. Khalid, F. Hadi, and A. U. Rahman, “Ion-scale cnoidal waves in a magnetized anisotropic superthermal plasma,” J. Phys. Soc., vol. 88, p. 114501, 2019. https://doi.org/10.7566/jpsj.88.114501.Search in Google Scholar
[18] M. Khalid, F. Hadi, and A. U. Rahman, “Modulation of multi-dimensional waves in anisotropic magnetized plasma,” Eur. Phys. J. Plus, vol. 136, p. 1061, 2021. https://doi.org/10.1140/epjp/s13360-021-02063-x.Search in Google Scholar
[19] H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel, “Magnetizing a complex plasma without a magnetic field,” Phys. Rev. Lett., vol. 109, p. 155003, 2012. https://doi.org/10.1103/physrevlett.109.155003.Search in Google Scholar
[20] M. Rosenberg, “Beam cyclotron instability in a dusty plasma,” Phys. Scripta, vol. 89, p. 085601, 2014. https://doi.org/10.1088/0031-8949/89/8/085601.Search in Google Scholar
[21] A. N. Dev, R. K. Kalita, M. K. Deka, K. Goswami, and J. Sarma, “Effect of trapping of heavy negative ions on the evolution of shock wave in a dust charge fluctuating plasma: a trapped K-dV-Burgers’ equation,” IEEE Trans. Plasma Sci., vol. 47, p. 3271, 2019. https://doi.org/10.1109/tps.2019.2917391.Search in Google Scholar
[22] E. E. Behery, S. K. El-Labany, M. M. Selim, T. H. Khalil, and M. A. Eissa, “Investigation of dust ion acoustic shock waves in dusty plasma using Cellular Neural Network,” Phys. Scripta, vol. 96, p. 095606, 2021. https://doi.org/10.1088/1402-4896/ac076e.Search in Google Scholar
[23] Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa, “Moon-related nonthermal ions observed by Nozomi: species, sources, and generation mechanisms,” J. Geophys. Res., vol. 108, p. 1025, 2003. https://doi.org/10.1029/2002ja009366.Search in Google Scholar
[24] G. Gloeckler and L. A. Fisk, “Anisotropic beams of energetic particles upstream from the termination shock of the solar wind,” Astrophys. J., vol. 648, p. L63, 2006. https://doi.org/10.1086/507841.Search in Google Scholar
[25] S. P. Christon, D. G. Mitchel, D. J. Williams, L. A. Frank, C. Y. Huangand, and T. E. Eastman, “Energy spectra of plasma sheet ions and electrons from ∼50 eV/eto ∼1 MeV during plasma temperature transitions,” J. Geophys. Res., vol. 93, p. 2562, 1988. https://doi.org/10.1029/ja093ia04p02562.Search in Google Scholar
[26] M. Maksimovic, V. Pierrard, and P. Riley, “Ulysses electron distributions fitted with Kappa functions,” Geophys. Res. Lett., vol. 24, p. 1151, 1997. https://doi.org/10.1029/97gl00992.Search in Google Scholar
[27] M. Khalid, M. Khan, Muddusir, A. U. Rahman, and M. Irshad, “Periodic and localized structures in dusty plasma with Kaniadakis distribution,” Z. Naturforsch., vol. 76, p. 891, 2021. https://doi.org/10.1515/zna-2021-0164.Search in Google Scholar
[28] S. Magni, H. E. Roman, R. Barni, C. Riccardi, T. Pierre, and D. Guyomarch, “Statistical analysis of correlations and intermittency of a turbulent rotating column in a magnetoplasma device,” Phys. Rev. E, vol. 72, p. 026403, 2005. https://doi.org/10.1103/physreve.72.026403.Search in Google Scholar
[29] R. A. Cairns, A. A. Mamun, R. Bingham, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, p. 2709, 1995. https://doi.org/10.1029/95gl02781.Search in Google Scholar
[30] R. Boström, “Observations of weak double layers on auroral field lines,” IEEE Trans, Plasma Sci., vol. 20, p. 756, 1992. https://doi.org/10.1109/27.199524.Search in Google Scholar
[31] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, p. 1827, 1994. https://doi.org/10.1029/94gl00886.Search in Google Scholar
[32] F. Verheest and M. A. Hellberg, “Compressive and rarefactive solitary waves in nonthermal two-component plasmas,” Phys. Plasmas, vol. 17, p. 102312, 2010. https://doi.org/10.1063/1.3494245.Search in Google Scholar
[33] Y. Ghai, N. S. Saini, and B. Eliasson, “Landau damping of dust acoustic solitary waves in nonthermal plasmas,” Phys. Plasmas, vol. 25, p. 013704, 2018. https://doi.org/10.1063/1.5011005.Search in Google Scholar
[34] A.-ur Rahman, M. Khalid, and A. Zeb, “Compressive and rarefactive ion acoustic nonlinear periodic waves in nonthermal plasmas,” Braz. J. Phys., vol. 49, p. 726, 2019. https://doi.org/10.1007/s13538-019-00693-2.Search in Google Scholar
[35] M. Khalid, M. Khan, A. Rahman, and F. Hadi, “Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons,” Indian J. Phys., vol. 96, p. 1783, 2022. https://doi.org/10.1007/s12648-021-02108-y.Search in Google Scholar
[36] M. Khalid, A. Kabir, and M. Irshad, “Ion-scale solitary waves in magnetoplasma with non-thermal electrons,” Europhys. Lett., vol. 138, p. 53002, 2022. https://doi.org/10.1209/0295-5075/ac668e.Search in Google Scholar
[37] M. Khalid, A. Ullah, A. Kabir, H. Khan, M. Irshad, and S. M. Shah, “Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution,” Europhys. Lett., vol. 138, p. 63001, 2022. https://doi.org/10.1209/0295-5075/ac765c.Search in Google Scholar
[38] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys., vol. 52, p. 479, 1988. https://doi.org/10.1007/bf01016429.Search in Google Scholar
[39] A. S. Bains, M. Tribeche, and T. S. Gill, “Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 18, p. 022108, 2011. https://doi.org/10.1063/1.3554658.Search in Google Scholar
[40] M. Mehdipoor and M. Asri, “On the characteristics of solitary waves and shocks in nonextensive plasmas: collisionality and kinematic viscosity effects,” IEEE Trans. Plasma Sci., vol. 47, p. 4923, 2019. https://doi.org/10.1109/tps.2019.2943842.Search in Google Scholar
[41] W. F. El-Taibany, S. K. El-Labany, E. E. Behery, and A. M. Abdelghany, “Nonlinear dust acoustic waves in a self-gravitating and opposite-polarity complex plasma medium,” Eur. Phys. J. Plus, vol. 134, p. 457, 2019. https://doi.org/10.1140/epjp/i2019-12827-3.Search in Google Scholar
[42] G. Ullah, M. Saleem, M. Khan, M. Khalid, A. U. Rahman, and S. Nabi, “Ion acoustic solitary waves in magnetized electron-positron-ion plasmas with Tsallis distributed electrons,” Contrib. Plasma Phys., vol. 60, p. e202000068, 2020. https://doi.org/10.1002/ctpp.202000068.Search in Google Scholar
[43] M. Khalid, A.-ur Rahman, A. Althobaiti, et al.., “Linear and nonlinear electrostatic excitations and their stability in a nonextensive anisotropic magnetoplasma,” Symmetry, vol. 13, p. 2232, 2021. https://doi.org/10.3390/sym13112232.Search in Google Scholar
[44] M. Khalid, “Oblique ion-acoustic solitary waves in anisotropic plasma with Tsallis distribution,” Europhys. Lett., vol. 138, p. 53003, 2022. https://doi.org/10.1209/0295-5075/ac6a08.Search in Google Scholar
[45] M. Khalid, M. Khan, A.-ur. Rahman, A. Kabir, and M. Irshad, “Nonlinear periodic structures in nonthermal magnetoplasma with the presence of pressure anisotropy,” Braz. J. Phys., vol. 52, p. 109, 2022. https://doi.org/10.1007/s13538-022-01100-z.Search in Google Scholar
[46] S. K. El-Labany, E. E. Behery, H. N. Abd El-Razek, and L. A. Abdelrazek, “Shock waves in magnetized electronegative plasma with nonextensive electrons,” Eur. Phys. J. D, vol. 74, p. 104, 2020. https://doi.org/10.1140/epjd/e2020-10086-7.Search in Google Scholar
[47] M. Khalid, M. Khan, A. U. Rahman, and M. Irshad, “Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas,” Z. Naturforsch., vol. 77, p. 125, 2022. https://doi.org/10.1515/zna-2021-0262.Search in Google Scholar
[48] M. Tribeche, R. Amour, and P. K. Shukla, “Ion acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution,” Phys. Rev. E, vol. 85, p. 037401, 2012. https://doi.org/10.1103/physreve.85.037401.Search in Google Scholar PubMed
[49] R. Amour, M. Tribeche, and P. Shukla, “Electron acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution,” Astrophys. Space Sci., vol. 338, p. 287, 2012. https://doi.org/10.1007/s10509-011-0950-0.Search in Google Scholar
[50] G. Williams, I. Kourakis, F. Verheest, and M. A. Hellberg, “Re-examining the Cairns-Tsallis model for ion acoustic solitons,” Phys. Rev. E, vol. 88, p. 023103, 2013. https://doi.org/10.1103/physreve.88.023103.Search in Google Scholar
[51a] W. F. El-Taibany, N. M. El-Siragy, E. E. Behery, A. A. Elbendary, and R. M. Taha, “The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns-Tsallis complex plasma,” Indian J. Phys, vol. 92, p. 661, 2018.10.1007/s12648-017-1150-8Search in Google Scholar
[b] W. F. El-Taibany, N. M. El-Siragy, E. E. Behery, A. A. Elbendary, and R. M. Taha, “The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns-Tsallis complex plasma,” Chinese J. Phys., vol. 58, p. 151, 2019.10.1007/s12648-017-1150-8Search in Google Scholar
[52] M. A. Obregon and Yu. A. Stepanyants, “Oblique magneto-acoustic solitons in a rotating plasma,” Phys. Lett. A, vol. 249, p. 315, 1998. https://doi.org/10.1016/s0375-9601(98)00735-x.Search in Google Scholar
[53] L. A. Ostrovsky, “Nonlinear internal waves a in rotating ocean,” Oceanology, vol. 18, p. 119, 1978.Search in Google Scholar
[54] D. Korteweg and G. de Vries, “XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Philos. Mag., vol. 39, p. 422, 1895. https://doi.org/10.1080/14786449508620739.Search in Google Scholar
[55] P. E. Holloway, E. Pelinovsky, and T. Talipova, “A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone,” J. Geophys. Res., vol. 104, p. 18333, 1999. https://doi.org/10.1029/1999jc900144.Search in Google Scholar
[56] R. Grimshaw, “Evolution equations for weakly nonlinear, long internal waves in a rotating fluid,” Stud. Appl. Math., vol. 73, p. 1, 1985. https://doi.org/10.1002/sapm19857311.Search in Google Scholar
[57] B. Maity, S. Ghosh, and R. Bharuthram, “Nonlinear ion acoustic wave in a pair-ion plasma in a uniform weak magnetic field,” Phys. Scripta, vol. 90, p. 045604, 2015. https://doi.org/10.1088/0031-8949/90/4/045604.Search in Google Scholar
[58] N. Zerglaine, K. Aoutou, and T. H. Zerguini, “Propagation of dust ion acoustic wave in a uniform weak magnetic field,” Astrophys. Space Sci., vol. 364, p. 84, 2019. https://doi.org/10.1007/s10509-019-3573-5.Search in Google Scholar
[59] M. Tribeche, L. Djebarni, and R. Amour, “Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 17, p. 042114, 2010. https://doi.org/10.1063/1.3374429.Search in Google Scholar
[60] M. Rosenberg, “On dust wave instabilities in collisional magnetized plasmas,” IEEE Trans. Plasma Sci., vol. 44, p. 451, 2016. https://doi.org/10.1109/tps.2015.2499119.Search in Google Scholar
[61] J. A. Ratcliffe, An Introduction to the Ionosphere and Magnetosphere, London, Cambridge University Press, 1972.Search in Google Scholar
[62] F. Verheest and S. Pillay, “Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas,” Phys. Plasmas, vol. 15, p. 013703, 2008. https://doi.org/10.1063/1.2831025.Search in Google Scholar
[63] A. R. Plastino and A. Plastino, “Stellar polytropes and Tsallis’ entropy,” Phys. Lett. A, vol. 174, p. 384, 1993. https://doi.org/10.1016/0375-9601(93)90195-6.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- General
- The electrostatic wave modes and formation of dust voids in an externally magnetized cylindrical dusty plasma
- Atomic, Molecular & Chemical Physics
- Accurate theoretical calculation of relativistic atomic data of Zn-like, Ga-like and Ge-like Re ions
- Dynamical Systems & Nonlinear Phenomena
- Evolution of ion-acoustic shock waves in magnetized plasma with hybrid Cairns–Tsallis distributed electrons
- Free vibration analysis of rotating sandwich beams with FG-CNTRC face sheets in thermal environments with general boundary conditions
- Phase synchronization of Wien bridge oscillator-based Josephson junction connected by hybrid synapse
- Gravitation & Cosmology
- Formulation of axion-electrodynamics with Dirac fields
- Solid State Physics & Materials Science
- Tunable properties of the defect mode of a ternary photonic crystal with a high TC superconductor and semiconductor layers
- Trace cadmium ion detection using optical fiber Mach–Zehnder interferometer coated with PVA/TEOS/APTES
Articles in the same Issue
- Frontmatter
- General
- The electrostatic wave modes and formation of dust voids in an externally magnetized cylindrical dusty plasma
- Atomic, Molecular & Chemical Physics
- Accurate theoretical calculation of relativistic atomic data of Zn-like, Ga-like and Ge-like Re ions
- Dynamical Systems & Nonlinear Phenomena
- Evolution of ion-acoustic shock waves in magnetized plasma with hybrid Cairns–Tsallis distributed electrons
- Free vibration analysis of rotating sandwich beams with FG-CNTRC face sheets in thermal environments with general boundary conditions
- Phase synchronization of Wien bridge oscillator-based Josephson junction connected by hybrid synapse
- Gravitation & Cosmology
- Formulation of axion-electrodynamics with Dirac fields
- Solid State Physics & Materials Science
- Tunable properties of the defect mode of a ternary photonic crystal with a high TC superconductor and semiconductor layers
- Trace cadmium ion detection using optical fiber Mach–Zehnder interferometer coated with PVA/TEOS/APTES