Home Local structure and electron density distribution analysis of tin(II) sulfide using pair distribution function and maximum entropy method
Article
Licensed
Unlicensed Requires Authentication

Local structure and electron density distribution analysis of tin(II) sulfide using pair distribution function and maximum entropy method

  • Muthaian Charles Robert ORCID logo EMAIL logo , Nagaraj Pavithra , Ramachandran Saravanan and Subramanian Saravanakumar
Published/Copyright: March 17, 2022

Abstract

Tin(II) sulfide (SnS) is a low symmetric orthorhombic double-layered dual bandgap semiconductor. It is low cost, toxic-free and highly abundant on Earth, with multifunctional optical, electronic, magnetic and light conversion applications when doped adequately with impurity. These physical properties can be understood only by the complete understanding of microstructural properties like average structure, electron density distribution inside the unit cell, bonding nature and local structure. In this work, the average and local structure, along with the electron density distribution of a nano crystallite sized single-phase sample of tin(II) sulfide is elucidated with the help of precise X-ray intensity data. The average structural information was extracted using Rietveld refinement analysis and the visual mapping of 3D, 2D and 1D electron density distribution inside the unit cell and its numerical contribution using maximum entropy method (MEM). The bonding between the first inter and intra bonding between Sn and S atoms is 2.65,105 Å and 3.2689 Å with mid bond electron density 0.907 e/Å3 and 0.1688 e/Å3 respectively. The inter-atomic correlations of 1st, 2nd and 3rd nearest neighbour atoms, their bond length, and the crystallite size are reported from pair distribution function (PDF) analysis using low Q-XRD data (Q ∼ 6.5 Å−1). The PDF analysis shows that the first and second nearest Sn–S bonding distance is 2.6064 Å and 3.4402 Å, first is between the Sn and S atoms of the same layer and the other between the Sn and S atoms of the adjacent layers respectively.


Corresponding author: Muthaian Charles Robert, Research Centre and PG Department of Physics, HKRH College, Uthamapalayam, Theni, Tamilnadu, India, E-mail:

Acknowledgments

The authors acknowledge the Sophisticated Test and Instrumentation Centre, University of Science and Technology, Cochin, Kerala, India, for powder XRD. The authors sincerely thank to the Research Centre and PG department of Physics, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu for their constant encouragement to the research activities.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors did not receive support from any organization for the submitted work.

  3. Conflict of interest statement: The authors declare that they have no known financial interests in any form or non-financial personal political and religious relationship that could have appeared to influence the work reported in this paper.

References

[1] A. Javed, N. Khan, S. Bashir, M. Ahmad, and M. Bashir, “Thickness dependent structural, electrical and optical properties of cubic SnS thin films,” Mater. Chem. Phys., vol. 246, p. 122831, 2020. https://doi.org/10.1016/j.matchemphys.2020.122831.Search in Google Scholar

[2] A. R. H. F. Ettema, R. A. De Groot, C. Haas, and T. S. Turner, “Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations,” Phys. Rev. B, vol. 46, p. 7363, 1992. https://doi.org/10.1103/physrevb.46.7363.Search in Google Scholar

[3] R. F. Barrow, G. Drummond, and H. C. Rowlinson, “The absorption spectrum of SnS vapour in the ultra-violet and schumann regions,” Proc. Phys. Soc. Sect. A, vol. 66, p. 885, 1953. https://doi.org/10.1088/0370-1298/66/10/305.Search in Google Scholar

[4] M. Sharon and K. Basavaswaran, “Photoelectrochemical behaviour of tin monosulphide,” Sol. Cell., vol. 25, p. 97, 1988. https://doi.org/10.1016/0379-6787(88)90015-4.Search in Google Scholar

[5] S. Rodríguez-Castro, C. Álvarez-Macías, M. Rivero, et al.., “Evaluation of sns:Cu thin film properties obtained by usp technique to implement it as an absorbent layer in solar cells using scaps,” Coatings, vol. 11, no. 7, p. 754, 2021. https://doi.org/10.3390/coatings11070754.Search in Google Scholar

[6] A. Nalin Mehta, H. Zhang, A. Dabral, et al.., “Structural characterization of SnS crystals formed by chemical vapour deposition,” J. Microsc., vol. 268, p. 276, 2017. https://doi.org/10.1111/jmi.12652.Search in Google Scholar PubMed

[7] M. Powalla, S. Paetel, E. Ahlswede, et al.., “Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-Cu(In,Ga)Se2-, and perovskite-based materials,” Appl. Phys. Rev., vol. 5, no. 4, p. 041602, 2018. https://doi.org/10.1063/1.5061809.Search in Google Scholar

[8] A. Kuddus, S. K. Mostaque, and J. Hossain, “Simulating the performance of a high-efficiency SnS-based dual-heterojunction thin film solar cell,” Opt. Mater. Express, vol. 11, p. 3812, 2021. https://doi.org/10.1364/ome.439629.Search in Google Scholar

[9] W. Hofmann, “Ergebnisse der Strukturbestimmung komplexer Sulfide,” Z. für Kristallogr. - Cryst. Mater., vol. 92, p. 161, 1935. https://doi.org/10.1524/zkri.1935.92.1.161.Search in Google Scholar

[10] U. P. Gawai, D. K. Gaikwad, S. L. Patil, et al.., “Synthesis, local structure and optical property studies of α-SnS microrods by synchrotron X-ray pair distribution function and micro-Raman shift,” RSC Adv., vol. 10, p. 21277, 2020. https://doi.org/10.1039/d0ra03586f.Search in Google Scholar PubMed PubMed Central

[11] S. Ali, F. Wang, M. Zubair Iqbal, H. Ullah Shah, and S. Zafar, “Hydrothermal synthesis, characterization and optical properties of SnS prismatic nanorods,” Mater. Lett., vol. 206, p. 22, 2017. https://doi.org/10.1016/j.matlet.2017.06.031.Search in Google Scholar

[12] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, p. 65, 1969. https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

[13] R. L. Snyder, H. J. Bunge, and J. Fiala, “Voigt-function model in diffraction line -broadening analysis,” in Microstrucure Analysis from Diffraction, International Union of Crystallography, 1999, pp. 1–44.Search in Google Scholar

[14] T. Ida, M. Ando, and H. Toraya, “Extended pseudo-Voigt function for approximating the Voigt profile,” J. Appl. Crystallogr., vol. 33, p. 1311, 2000. https://doi.org/10.1107/s0021889800010219.Search in Google Scholar

[15] V. Petrícek, M. Dušek, and L. Palatinus, “Crystallographic computing system JANA2006: General features,” Zeitschrift Fur Krist. - Cryst. Mater., vol. 229, no. 5, pp. 345–352, 2014. https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

[16] R. Saravanan, Y. Ono, M. Isshiki, K. Ohno, and T. Kajitani, “Electron density distribution in GaAs using MEM,” J. Phys. Chem. Solid., vol. 64, p. 51, 2003. https://doi.org/10.1016/s0022-3697(02)00209-3.Search in Google Scholar

[17] K. Momma, T. Ikeda, A. A. Belik, and F. Izumi, “Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting,” Powder Diffr., vol. 28, p. 184, 2013. https://doi.org/10.1017/s088571561300002x.Search in Google Scholar

[18] K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr., vol. 41, p. 653, 2008. https://doi.org/10.1107/s0021889808012016.Search in Google Scholar

[19] B. E. Warren, “X-ray diffraction of vitreous silica,” Z. für Kristallogr. - Cryst. Mater., vol. 86, p. 349, 1933. https://doi.org/10.1524/zkri.1933.86.1.349.Search in Google Scholar

[20] J. L. Finney, A. Hallbrucker, I. Kohl, et al.., “Structures of high and low density amorphous ice by neutron diffraction,” Phys. Rev. Lett., vol. 88, p. 225503, 2002. https://doi.org/10.1103/physrevlett.88.225503.Search in Google Scholar

[21] C. Yang, L. Sun, R. E. Brandt, et al.., “Measurement of Contact Resistivity at Metal - Tin Sulfide (SnS) Interfaces,” J. Appl. Phys., vol. 122, p. 45302, 2017. https://doi.org/10.1063/1.4992086.Search in Google Scholar

[22] W. Dmowksi, B. H. Toby, T. Egami, et al.., “Short-range ordering due to displacements of thallium and oxygen atoms in superconducting Tl2Ba2CaCu2O8 observed by pulsed-neutron scattering,” Phys. Rev. Lett., vol. 61, p. 2608, 1988. https://doi.org/10.1103/physrevlett.61.2608.Search in Google Scholar

[23] V. Petkov, S. J. L. Billinge, P. Larson, et al.., “Structure of nanocrystalline materials using atomic pair distribution function analysis,” Phys. Rev. B, vol. 65, p. 092105, 2002. https://doi.org/10.1103/physrevb.65.092105.Search in Google Scholar

[24] T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca, “Structural analysis of complex materials using the atomic pair distribution function - a practical guide,” Z. Kristallogr., vol. 218, p. 132, 2003. https://doi.org/10.1524/zkri.218.2.132.20664.Search in Google Scholar

[25] P. F. Peterson, E. S. Bozin, T. Proffen, and S. J. L. Billinge, “Improved measures ofquality for the atomic pair distribution function,” J. Appl. Crystallography, vol. 36, pp. 53–64, 2003. https://doi.org/10.1107/S0021889802018708.Search in Google Scholar

[26] J. Johny, S. Sepulveda-Guzman, B. Krishnan, et al.., “Tin Sulfide: Reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications,” Sol. Energy Mater. Sol. Cells, vol. 189, pp. 53–62, 2018. https://doi.org/10.1016/j.solmat.2018.09.025.Search in Google Scholar

[27] T. J. B. Holland and S. A. T. Redfern, “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineral. Mag., vol. 61, p. 65, 1997. https://doi.org/10.1180/minmag.1997.061.404.07.Search in Google Scholar

[28] J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc., vol. 57, p. 160, 1945. https://doi.org/10.1088/0959-5309/57/3/302.Search in Google Scholar

[29] A. Taylor and H. Sinclair, “On the determination of lattice parameters by the debye-scherrer method,” Proc. Phys. Soc., vol. 57, p. 126, 1945. https://doi.org/10.1088/0959-5309/57/2/306.Search in Google Scholar

[30] G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., vol. 1, p. 22, 1953. https://doi.org/10.1016/0001-6160(53)90006-6.Search in Google Scholar

[31] S. F. Gull and G. J. Daniell, “Image reconstruction from incomplete and noisy data,” Nature, vol. 272, no. 5655, p. 686, 1978. https://doi.org/10.1038/272686a0.Search in Google Scholar

[32] N. Koteeswara Reddy, M. Devika, and E. S. R. Gopal, “Review on tin(II) sulfide (SnS) material: synthesis, properties, and applications,” Crit. Rev. Solid State Mater. Sci., vol. 40, p. 359, 2015. https://doi.org/10.1080/10408436.2015.1053601.Search in Google Scholar

[33] B. Subramanian, C. Sanjeeviraja, and M. Jayachandran, “Photoelectrochemical characteristics of brush plated tin sulfide thin films,” Solar Energy Materials & Solar Cells, vol. 79, p. 57, 2003.10.1016/S0927-0248(02)00366-5Search in Google Scholar

[34] C. L. Farrow, P. Juhas, J. W. Liu, et al.., “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys. Condens. Matter, vol. 19, p. 335219, 2007. https://doi.org/10.1088/0953-8984/19/33/335219.Search in Google Scholar PubMed

[35] S. D. M. Jacques, M. Di Michiel, S. A. J. Kimber, et al.., “Pair distribution functioncomputed tomography,” Nat. Commun., vol. 4, no. 1, pp. 1–7, 2013. https://doi.org/10.1038/ncomms3536.Search in Google Scholar PubMed

[36] S. Barraza-Lopez, B. M. Fregoso, J. W. Villanova, S. S. P. Parkin, and K. Chang, “Colloquium: Physical properties of group -IV monochalcogenide monolayers,” Rev. Mod. Phys., vol. 93, no. 1, 2021. https://doi.org/10.1103/revmodphys.93.011001.Search in Google Scholar

Received: 2022-01-22
Revised: 2022-02-21
Accepted: 2022-02-25
Published Online: 2022-03-17
Published in Print: 2022-07-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2022-0017/html?lang=en&srsltid=AfmBOoqilZ7Sx0bxY4XtQL_XtlvsrD4xJ6lsm8EU3NKxvvkz4oQJRqEA
Scroll to top button