Startseite Impact of Sn ions on structural and electrical description of TiO2 nanoparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of Sn ions on structural and electrical description of TiO2 nanoparticles

  • Mutaz Salih , M. Khairy , Babiker Abdulkhair , M. G. Ghoniem , Nagwa Ibrahim , M. A. Ben Aissa und A. Modwi EMAIL logo
Veröffentlicht/Copyright: 8. Juli 2021

Abstract

In this paper, Sn-doped TiO2 nanomaterials with varying concentrations were manufactured through a simple procedure. The fabricated TiO2 and Sn loaded on TiO2 nanoparticles were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, and resistance analyses. The benefits of dielectric constant and ac conductivity rise at high Sn loaded concentration on TiO2 nanoparticles. The enhanced electrical conductivity is seen for STO3 (3.5% Sn doped TiO2) and STO4 (5% Sn doped TiO2) specimens are apparently associated with the introduced high defect TiO2 lattice. Furthermore, the fabricated specimens’ obtained findings may be applied as possible candidates for high-energy storage devices. Moreover, proper for the manufacture of materials working at a higher frequency.


Corresponding author: A. Modwi, Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: We declare that we do not have any commercial or associative interest that could potentially effect or bias the submitted paper.

References

[1] K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, and L. El Mir, “Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method,” Microelectron. Eng., vol. 128, pp. 53–58, 2014.10.1016/j.mee.2014.05.029Suche in Google Scholar

[2] A. Modwi, M. A. Abbo, E. A. Hassan, and A. Houas, “Effect of annealing on physicochemical and photocatalytic activity of Cu 5% loading on ZnO synthesized by sol–gel method,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12974–12984, 2016.10.1007/s10854-016-5436-ySuche in Google Scholar

[3] A. Modwi, K. K. Taha, L. Khezami, et al.., “Structural and electrical characterization of Ba/ZnO nanoparticles fabricated by co-precipitation,” J. Inorg. Organomet. Polym. Mater., pp. 1–12, 2019. https://doi.org/10.1007/s10904-019-01425-4.Suche in Google Scholar

[4] M. Nouiri, A. Guefreche, K. Djessas, and L. El Mir, “Highlighting the Au/TiO2 role in the memory effect of Au/TiO2/ITO/ZnO: Al/p-Si heterostructure,” J. Mater. Sci. Mater. Electron., vol. 31, no. 9, pp. 7084–7092, 2020.10.1007/s10854-020-03278-xSuche in Google Scholar

[5] C. Karunakaran, P. Vinayagamoorthy, and J. Jayabharathi, “Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized Mn-doped TiO2/ZnO core–shell nanoparticles,” Superlattice. Microst., vol. 64, pp. 569–580, 2013. https://doi.org/10.1016/j.spmi.2013.10.021.Suche in Google Scholar

[6] I. Grissa, J. ElGhoul, R. Mrimi, L. El Mir, H. B. Cheikh, and P. Horcajada, “In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles,” Brain Res. Bull., vol. 155, pp. 119–128, 2020.10.1016/j.brainresbull.2019.10.005Suche in Google Scholar PubMed

[7] K. Dai, L. Lu, and G. Dawson, “Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue,” J. Mater. Eng. Perform., vol. 22, no. 4, pp. 1035–1040, 2013. https://doi.org/10.1007/s11665-012-0344-7.Suche in Google Scholar

[8] A. Abbasi, “TiO2-Based nanocarriers for drug delivery,” in Nanocarriers for Drug Delivery, Iran, Elsevier, 2019, pp. 205–248.10.1016/B978-0-12-814033-8.00007-2Suche in Google Scholar

[9] W. Xu, S. Q. Wang, Q. Y. Zhang, et al.., “Abnormal oxidation of Ag films and its application to fabrication of photocatalytic films with a-TiO2/h-Ag2O heterostructure,” J. Phys. Chem. C, vol. 121, no. 18, pp. 9901–9909, 2017.10.1021/acs.jpcc.7b01229Suche in Google Scholar

[10] L. Gao, W. Gan, Z. Qiu, X. Zhan, T. Qiang, and J. Li, “Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities,” Sci. Rep., vol. 7, no. 1, pp. 1–13, 2017. https://doi.org/10.1038/s41598-017-01244-y.Suche in Google Scholar PubMed PubMed Central

[11] M. Khairy and W. Zakaria, “Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes,” Egypt. J. Pet., vol. 23, no. 4, pp. 419–426, 2014. https://doi.org/10.1016/j.ejpe.2014.09.010.Suche in Google Scholar

[12] H. Zhu, Y. Jing, M. Pal, et al.., “Mesoporous TiO 2@ N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol–gel process for superior lithium storage,” Nanoscale, vol. 9, no. 4, pp. 1539–1546, 2017.10.1039/C6NR08885FSuche in Google Scholar PubMed

[13] Z. Shen, G. Wang, H. Tian, et al.., “Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO2 composite and anatase TiO2 beads for efficient dye-sensitized solar cells,” Electrochim. Acta, vol. 216, pp. 429–437, 2016.10.1016/j.electacta.2016.09.047Suche in Google Scholar

[14] H. Geng, H. Ming, D. Ge, J. Zheng, and H. Gu, “Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage,” Electrochim. Acta, vol. 157, pp. 1–7, 2015.10.1016/j.electacta.2015.01.071Suche in Google Scholar

[15] Q. Zhu, C. Xie, H. Li, C. Yang, and D. Zeng, “A novel planar integration of all-solid-state capacitor and photodetector by an ultra-thin transparent sulfated TiO2 film,” Nano Energy, vol. 9, pp. 252–263, 2014.10.1016/j.nanoen.2014.08.002Suche in Google Scholar

[16] Y. Zou, J. W. Shi, D. Ma, Z. Fan, L. Lu, and C. Niu, “In situ synthesis of C-doped TiO2@ g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution,” Chem. Eng. J., vol. 322, pp. 435–444, 2017.10.1016/j.cej.2017.04.056Suche in Google Scholar

[17] A. Elmouwahidi, E. Bailón-García, J. Castelo-Quibén, et al.., “Carbon–TiO 2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases,” J. Mater. Chem., vol. 6, no. 2, pp. 633–644, 2018.10.1039/C7TA08023ASuche in Google Scholar

[18] M. M. Abutalib and A. Rajeh, “Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite,” J. Organomet. Chem., vol. 918, p. 121309, 2020. https://doi.org/10.1016/j.jorganchem.2020.121309.Suche in Google Scholar

[19] M. Abutalib and A. Rajeh, “Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: combined FT-IR/DFT for electrochemical applications,” J. Organomet. Chem., vol. 920, p. 121348, 2020. https://doi.org/10.1016/j.jorganchem.2020.121348.Suche in Google Scholar

[20] A. Hezma, A. Rajeh, and M. A. Mannaa, “An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite,” Colloid. Surface. Physicochem. Eng. Aspect., vol. 581, p. 123821, 2019. https://doi.org/10.1016/j.colsurfa.2019.123821.Suche in Google Scholar

[21] M. Abutalib and A. Rajeh, “Preparation and characterization of polyaniline/sodium alginate-doped TiO 2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications,” J. Mater. Sci. Mater. Electron., vol. 31, no. 12, pp. 9430–9442, 2020. https://doi.org/10.1007/s10854-020-03483-8.Suche in Google Scholar

[22] M. Abutalib and A. Rajeh, “Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications,” Polym. Test., vol. 91, p. 106803, 2020. https://doi.org/10.1016/j.polymertesting.2020.106803.Suche in Google Scholar

[23] A. Rajeh, H. Ragab, and M. Abutalib, “Co doped ZnO reinforced PEMA/PMMA composite: structural, thermal, dielectric and electrical properties for electrochemical applications,” J. Mol. Struct., vol. 1217, p. 128447, 2020. https://doi.org/10.1016/j.molstruc.2020.128447.Suche in Google Scholar

[24] M. Abutalib and A. Rajeh, “Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications,” Polym. Test., vol. 93, p. 107013, 2021. https://doi.org/10.1016/j.polymertesting.2020.107013.Suche in Google Scholar

[25] F. Hezam, A. Rajeh, O. Nur, and M. A. Mustafa, “Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications,” Phys. B Condens. Matter, vol. 596, p. 412389, 2020.10.1016/j.physb.2020.412389Suche in Google Scholar

[26] K. Song, X. Han, and G. Shao, “Electronic properties of rutile TiO2 doped with 4d transition metals: first-principles study,” J. Alloys Compd., vol. 551, pp. 118–124, 2013. https://doi.org/10.1016/j.jallcom.2012.09.077.Suche in Google Scholar

[27] S. Al Jitan, G. Palmisano, and C. Garlisi, “Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2,” Catalysts, vol. 10, no. 2, p. 227, 2020. https://doi.org/10.3390/catal10020227.Suche in Google Scholar

[28] J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, and L. Qiao, “Photocatalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst,” J. Mol. Catal. Chem., vol. 260, nos. 1-2, pp. 241–246, 2006. https://doi.org/10.1016/j.molcata.2006.07.033.Suche in Google Scholar

[29] J. Nowotny, T. Bak, M. K. Nowotny, and L. R. Sheppard, “Defect chemistry and electrical properties of titanium dioxide. 2. Effect of aliovalent ions,” J. Phys. Chem. C, vol. 112, no. 2, pp. 602–610, 2008.10.1021/jp0745642Suche in Google Scholar

[30] D. Singh, P. Yadav, N. Singh, et al.., “Dielectric properties of Fe-doped TiO2 nanoparticles synthesised by sol–gel route,” J. Exp. Nanosci., vol. 8, no. 2, pp. 171–183, 2013.10.1080/17458080.2011.564215Suche in Google Scholar

[31] J. H. Noh, H. S. Jung, J.-K. Lee, J.-R. Kim, and K. S. Hong, “Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering,” J. Eur. Ceram. Soc., vol. 27, nos 8–9, pp. 2937–2940, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.11.018.Suche in Google Scholar

[32] A. Arunachalam, S. Dhanapandian, and C. Manoharan, “Effect of Sn doping on the structural, optical and electrical properties of TiO 2 films prepared by spray pyrolysis,” J. Mater. Sci. Mater. Electron., vol. 27, no. 1, pp. 659–676, 2016. https://doi.org/10.1007/s10854-015-3802-9.Suche in Google Scholar

[33] Q. Cai, Y. Zhang, C. Liang, et al.., “Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature,” Electrochim. Acta, vol. 261, pp. 227–235, 2018.10.1016/j.electacta.2017.12.108Suche in Google Scholar

[34] X. Wei, H. Cai, Q. Feng, et al.., “Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination,” Mater. Lett., vol. 228, pp. 379–383, 2018.10.1016/j.matlet.2018.06.050Suche in Google Scholar

[35] J. Liu, Y. Zhao, L. Shi, et al.., “Solvothermal synthesis of crystalline phase and shape controlled Sn4+-doped TiO2 nanocrystals: effects of reaction solvent,” ACS Appl. Mater. Interfaces, vol. 3, no. 4, pp. 1261–1268, 2011.10.1021/am2000642Suche in Google Scholar PubMed

[36] Y. Cao, W. Yang, W. Zhang, G. Liu, P. Yue, “Improved photocatalytic activity of Sn 4+ doped TiO 2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition,” New J. Chem., vol. 28, no. 2, pp. 218–222, 2004.10.1039/b306845eSuche in Google Scholar

[37] N. Elamin, A. Modwi, M. Ben Aissa, K. K. Taha, O. K. Al-Duaij, and T. A. Yousef, “Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of Congo red under visible light,” J. Mater. Sci. Mater. Electron., vol. 32, no. 2, pp. 2234–2248, 2021.10.1007/s10854-020-04988-ySuche in Google Scholar

[38] C. B. Carter and M. G. Norton, “Sols, gels, and organic chemistry,” in Ceramic Materials, New York, Springer, 2013, pp. 411–422.10.1007/978-1-4614-3523-5_22Suche in Google Scholar

[39] S. Mehraz, P. Kongsong, A. Taleb, N. Dokhane, and L. Sikong, “Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis,” Sol. Energy Mater. Sol. Cell., vol. 189, pp. 254–262, 2017.10.1016/j.solmat.2017.06.048Suche in Google Scholar

[40] F. Zhou, C. Yan, H. Wang, S. Zhou, and S. Komarnen, “Fabrication and characterization of TiO 2/Sepiolite nanocomposites doped with rare earth ions,” Mater. Lett., vol. 228, pp. 100–103, 2018. https://doi.org/10.1016/j.matlet.2018.05.138.Suche in Google Scholar

[41] A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods,” Solid State Sci., vol. 13, no. 1, pp. 251–256, 2011.10.1016/j.solidstatesciences.2010.11.024Suche in Google Scholar

[42] T. Pandiyarajan and B. Karthikeyan, “Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles,” J. Nanoparticle Res., vol. 14, no. 1, p. 647, 2012. https://doi.org/10.1007/s11051-011-0647-x.Suche in Google Scholar

[43] P. Bindu and S. Thomas, “Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis,” J. Theor. Appl. Phys., vol. 8, no. 4, pp. 123–134, 2014. https://doi.org/10.1007/s40094-014-0141-9.Suche in Google Scholar

[44] T. Ungár, “Characterization of nanocrystalline materials by X-ray line profile analysis,” J. Mater. Sci., vol. 42, no. 5, pp. 1584–1593, 2007. https://doi.org/10.1007/s10853-006-0696-1.Suche in Google Scholar

[45] G. Yang, Z. Jiang, H. Shi, T. Xiao, and Z. Yan, “Preparation of highly visible-light active N-doped TiO 2 photocatalyst,” J. Mater. Chem., vol. 20, no. 25, pp. 5301–5309, 2010.10.1039/c0jm00376jSuche in Google Scholar

[46] Q. Wang, Y. Fang, H. Meng, et al.., “Enhanced simulated sunlight induced photocatalytic activity by pomegranate-like S doped SnO2@ TiO2 spheres,” Colloid. Surface. Physicochem. Eng. Aspect., vol. 482, pp. 529–535, 2015.10.1016/j.colsurfa.2015.06.011Suche in Google Scholar

[47] D. Shaposhnik, R. Pavelko, E. Llobet, F. Gispert-Guirado, and X. Vilanova, “Hydrogen sensors on the basis of SnO2–TiO2 systems,” Sensor. Actuator. B Chem., vol. 174, pp. 527–534, 2012.10.1016/j.snb.2012.05.028Suche in Google Scholar

[48] J. Chen, J. Feng, and W. Yan, “Facile synthesis of a polythiophene/TiO 2 particle composite in aqueous medium and its adsorption performance for Pb (ii),” RSC Adv., vol. 5, no. 106, pp. 86945–86953, 2015. https://doi.org/10.1039/c5ra14614c.Suche in Google Scholar

[49] M. Mahmoudian, W. J. Basirun, Y. Alias, and M. Ebadi, “Synthesis and characterization of polypyrrole/Sn-doped TiO2 nanocomposites (NCs) as a protective pigment,” Appl. Surf. Sci., vol. 257, no. 20, pp. 8317–8325, 2011.10.1016/j.apsusc.2011.03.075Suche in Google Scholar

[50] M. Huang, J. Yu, B. Li, et al.., “Intergrowth and coexistence effects of TiO2–SnO2 nanocomposite with excellent photocatalytic activity,” J. Alloys Compd., vol. 629, pp. 55–61, 2015.10.1016/j.jallcom.2014.11.225Suche in Google Scholar

[51] M. Zhou, J. Yu, S. Liu, P. Zhai, and L. Jiang, “Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method,” J. Hazard Mater., vol. 154, nos. 1–3, pp. 1141–1148, 2008. https://doi.org/10.1016/j.jhazmat.2007.11.021.Suche in Google Scholar

[52] N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, and R. Poonguzhali, “The effect of Ce4+ incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles,” Mater. Char., vol. 97, pp. 37–46, 2014.10.1016/j.matchar.2014.08.021Suche in Google Scholar

[53] R. Long, Y. Dai, and B. Huang, “Geometric and electronic properties of Sn-doped TiO2 from first-principles calculations,” J. Phys. Chem. C, vol. 113, no. 2, pp. 650–653, 2009. https://doi.org/10.1021/jp8043708.Suche in Google Scholar

[54] M. M. Hassan, A. S. Ahmed, M. Chaman, W. Khan, A. H. Naqvi, and A. Azam, “Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles,” Mater. Res. Bull., vol. 47, no. 12, pp. 3952–3958, 2012.10.1016/j.materresbull.2012.08.015Suche in Google Scholar

[55] A. Farea, S. Kumar, K. Mujasam Batoo, A. Yousef, and Alimuddin, “Structure and electrical properties of Co0. 5CdxFe2. 5− xO4 ferrites,” J. Alloys Compd., vol. 464, nos 1–2, pp. 361–369, 2008. https://doi.org/10.1016/j.jallcom.2007.09.126.Suche in Google Scholar

[56] M. Ahmed, E. Ateia, and S. El-Dek, “Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite,” Mater. Lett., vol. 57, nos 26–27, pp. 4256–4266, 2003. https://doi.org/10.1016/s0167-577x(03)00300-8.Suche in Google Scholar

[57] S. A. Ansari, A. Nisar, B. Fatma, W. Khan, and A. H. Naqvi, “Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route,” Mater. Sci. Eng., B, vol. 177, no. 5, pp. 428–435, 2012.10.1016/j.mseb.2012.01.022Suche in Google Scholar

[58] X. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Luminescence and Raman scattering properties of Ag-doped ZnO films,” J. Phys. Appl. Phys., vol. 39, no. 23, p. 4992, 2006.10.1088/0022-3727/39/23/014Suche in Google Scholar

[59] K. Djessas, I. Bouchama, J. L. Gauffier, and Z. Ben Ayadi, “Effects of indium concentration on the properties of In-doped ZnO films: applications to silicon wafer solar cells,” Thin Solid Films, vol. 555, pp. 28–32, 2014.10.1016/j.tsf.2013.08.109Suche in Google Scholar

[60] C. Firdaus, M. S. B. Shah Rizam, M. Rusop, and S. Rahmatul Hidayah, “Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique,” Procedia Eng., vol. 41, pp. 1367–1373, 2012.10.1016/j.proeng.2012.07.323Suche in Google Scholar

[61] E. Luna-Arredondo, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. Meléndez-Lira, and M. d. l. L. Olvera, “Indium-doped ZnO thin films deposited by the sol–gel technique,” Thin Solid Films, vol. 490, no. 2, pp. 132–136, 2005.10.1016/j.tsf.2005.04.043Suche in Google Scholar

[62] M. N. Siddique, A. Ahmed, and P. Tripathi, “Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures,” J. Alloys Compd., vol. 735, pp. 516–529, 2018. https://doi.org/10.1016/j.jallcom.2017.11.114.Suche in Google Scholar

[63] S. Elliott, “A theory of ac conduction in chalcogenide glasses,” Phil. Mag., vol. 36, no. 6, pp. 1291–1304, 1977. https://doi.org/10.1080/14786437708238517.Suche in Google Scholar

[64] E. Kohnke, “Electrical and optical properties of natural stannic oxide crystals,” J. Phys. Chem. Solid., vol. 23, no. 11, pp. 1557–1562, 1962. https://doi.org/10.1016/0022-3697(62)90236-6.Suche in Google Scholar

[65] M. M. N. Ansari and S. Khan, “Structural, electrical and optical properties of sol-gel synthesized cobalt substituted MnFe2O4 nanoparticles,” Phys. B Condens. Matter, vol. 520, pp. 21–27, 2017. https://doi.org/10.1016/j.physb.2017.06.020.Suche in Google Scholar

[66] P. Bogusl, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B, vol. 51, no. 23, p. 17255, 1995. https://doi.org/10.1103/physrevb.51.17255.Suche in Google Scholar PubMed

[67] P. Perlin, T. Suski, H. Teisseyre, et al.., “Towards the identification of the dominant donor in GaN,” Phys. Rev. Lett., vol. 75, no. 2, p. 296, 1995.10.1103/PhysRevLett.75.296Suche in Google Scholar PubMed

[68] H. Frohlick, Theory of Dielectrics, Oxford, Oxford University Press, 1956.Suche in Google Scholar

[69] M. Ghosh and C. Rao, “Solvothermal synthesis of CdO and CuO nanocrystals,” Chem. Phys. Lett., vol. 393, nos 4–6, pp. 493–497, 2004. https://doi.org/10.1016/j.cplett.2004.06.092.Suche in Google Scholar

[70] C. Liu, X. Zu, and W. Zhou, “Magnetic interaction in Co-doped SnO2 nano-crystal powders,” J. Phys. Condens. Matter, vol. 18, no. 26, p. 6001, 2006. https://doi.org/10.1088/0953-8984/18/26/018.Suche in Google Scholar PubMed

[71] F. Alam, S. A. Ansari, W. Khan, M. Ehtisham Khan, and A. H. Naqvi, “Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites,” Funct. Mater. Lett., vol. 5, no. 03, p. 1250026, 2012.10.1142/S1793604712500269Suche in Google Scholar

Received: 2021-03-06
Revised: 2021-06-07
Accepted: 2021-06-13
Published Online: 2021-07-08
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0061/html?lang=de
Button zum nach oben scrollen