Startseite Curvilinear flow of micropolar fluid with Cattaneo–Christov heat flux model due to oscillation of curved stretchable sheet
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Curvilinear flow of micropolar fluid with Cattaneo–Christov heat flux model due to oscillation of curved stretchable sheet

  • Muhammad Naveed , Muhammad Imran und Zaheer Abbas ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. Juni 2021

Abstract

This paper aims to investigate the transfer of heat phenomenon in a hydromagnetic time dependent flow of micropolar fluid across an oscillating stretchable curved surface by using the Cattaneo–Christov heat flux model, which considers thermal relaxation time. An elastic curved surface that stretches back and forth causes the flow situation. The flow equations are derived as nonlinear partial differential equations by incorporating a curvilinear coordinates system, which is then solved analytically via the homotopy analysis method (HAM). The accuracy of the derived analytical results is also examined by using a finite-difference technique known as the Keller box method, and it is found to be in strong agreement. The influences of various physical characteristics such as material parameter, magnetic parameter, thermal relaxation parameter, a dimensionless radius of curvature, Prandtl number and ratio of surface’s oscillating frequency to its stretching rate parameter on angular velocity, fluid velocity, pressure, temperature, heat transmission rate, and skin friction and couple stress coefficient are depicted in detail with the help of graphs and tables. Furthermore, for the verification and validation of the current results, a tabular comparison of the published data in the literature for the case of flat oscillating surface versus curved oscillating surface is carried out and found to be in good agreement.


Corresponding author: Zaheer Abbas, Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail:

Acknowledgment

We are thankful to the honorable reviewers for their encouraging comments and constructive suggestions to improve the quality of the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] L. J. Crane, “Flow past a stretching plate,” Zeitschrift Fur Angew. Math. Und Phys. ZAMP., vol. 21, pp. 645–647, 1970. https://doi.org/10.1007/bf01587695.Suche in Google Scholar

[2] M. Sajid, N. Ali, T. Javed, and Z. Abbas, “Stretching a curved surface in a viscous fluid,” Chin. Phys. Lett., vol. 27, 2010, Art no. 024703. https://doi.org/10.1088/0256-307x/27/2/024703.Suche in Google Scholar

[3] K. M. Sanni, S. Asghar, M. Jalil, and N. F. Okechi, “Flow of viscous fluid along a nonlinearly stretching curved surface,” Results Phys, vol. 7, pp. 2851–2854, 2017. https://doi.org/10.1016/j.rinp.2016.11.058.Suche in Google Scholar

[4] M. Naveed, Z. Abbas, M. Sajid, and J. Hasnain, “Dual solution in hydromagnetic viscous fluid flow past a shrinking curved surface,” Arabian J. Sci. Eng., vol. 43, pp. 1189–1194, 2018. https://doi.org/10.1007/s13369-017-2772-z.Suche in Google Scholar

[5] V. K. Narla, C. Biswas, and G. A. Rao, “Entropy analysis of MHD fluid flow over a curved stretching sheet,” in AIP Conference Proceedings 2246.1, AIP Publishing LLC, 2020.10.1063/5.0014560Suche in Google Scholar

[6] M. Naveed, S. Ali, J. Hasnain, and Z. Abbas, “Analysis of Joule heating and Hall current on flow of hybrid nanofluid over a curved stretching surface with melting boundary condition,” Heat Tran. Res., vol. 52, no. 5, pp. 1–16, 2021.10.1615/HeatTransRes.2021036278Suche in Google Scholar

[7] C. Y. Wang, “Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid,” Acta Mech., vol. 72, pp. 261–268, 1988. https://doi.org/10.1007/bf01178312.Suche in Google Scholar

[8] Z. Abbas, Y. Wang, T. Hayat, and M. Oberlack, “Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface,” Int. J. Non Lin. Mech., vol. 43, no. 8, pp. 783–793, 2008. https://doi.org/10.1016/j.ijnonlinmec.2008.04.009.Suche in Google Scholar

[9] L. C. Zheng, X. Jin, X. X. Zhang, and J. H. Zhang, “Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects,” Acta Mech. Sin., vol. 29, pp. 667–675, 2013. https://doi.org/10.1007/s10409-013-0066-6.Suche in Google Scholar

[10] S. U. Khan, S. A. Shehzad, F. M. Abbasi, and S. H. Arshad, “Thermo diffusion aspects in Jeffrey nanofluid over periodically moving surface with time dependent thermal conductivity,” Therm. Sci., vol. 25, no. 1, pp. 197–207, 2021. https://doi.org/10.2298/tsci190428312u.Suche in Google Scholar

[11] Z. Abbas, M. Imran, and M. Naveed, “Time-dependent flow of thermally developed viscous fluid over an oscillatory stretchable curved surface,” Alexandria Engineering Journal, vol. 59, no. 6, pp. 4377–4390, 2020. https://doi.org/10.1016/j.aej.2020.07.044.Suche in Google Scholar

[12] M. Imran, Z. Abbas, M. Naveed, and N. Salamat, “Impact of Joule heating and melting on time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall,” Alexandria Engineering Journal, vol. 60, no. 4, pp. 4097–4113, 2021. https://doi.org/10.1016/j.aej.2021.02.055.Suche in Google Scholar

[13] A. C. Eringen, “Simple microfluids,” Int. J. Eng. Sci., vol. 2, no. 2, pp. 205–217, 1964. https://doi.org/10.1016/0020-7225(64)90005-9.Suche in Google Scholar

[14] A. C. Eringen, “Theory of micropolar fluids,” J. Math. Mech., pp. 1–18, 1966. https://doi.org/10.1512/iumj.1967.16.16001.Suche in Google Scholar

[15] A. C. Eringen, Microcontinuum Field Theories: II. Fluent Media, vol. 2, New York, Springer Science and Business Media, 2001.Suche in Google Scholar

[16] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser Boston, Springer Science and Business Media, 1999.10.1007/978-1-4612-0641-5Suche in Google Scholar

[17] T. Hayat and M. Qasim, “Effects of thermal radiation on unsteady magnetohydrodynamic flow of a micropolar fluid with heat and mass transfer,” Z. Naturforsch., vol. 65, no. 11, pp. 950–960, 2010. https://doi.org/10.1515/zna-2010-1107.Suche in Google Scholar

[18] M. Naveed, Z. Abbas, and M. Sajid, “MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation,” J. Appl. Fluid Mech., vol. 9, no. 1, pp. 131–138, 2016. https://doi.org/10.18869/acadpub.jafm.68.224.23967.Suche in Google Scholar

[19] S. H. M. Saleh, N. M. Arifin, R. Nazar, and I. Pop, “Unsteady micropolar fluid over a permeable curved stretching shrinking surface,” Math. Probl. Eng., pp. 1–13, 2017.10.1155/2017/3085249Suche in Google Scholar

[20] T. Hayat, R. Sajjad, R. Ellahi, A. Alsaedi, and T. Muhammad, “Homogeneous–heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface,” J. Mol. Liq., vol. 240, pp. 209–220, 2017. https://doi.org/10.1016/j.molliq.2017.05.054.Suche in Google Scholar

[21] A. Yasmin, K. Ali, and M. Ashraf, “Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020. https://doi.org/10.1038/s41598-020-61439-8.Suche in Google Scholar

[22] S. I. Abdelsalam, K. S. Mekheimer, and A. Z. Zaher, “Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment,” Chin. J. Phys., vol. 67, pp. 314–329, 2020. https://doi.org/10.1016/j.cjph.2020.07.011.Suche in Google Scholar

[23] M. M. Bhatti, M. I. Marin, A. Zeeshan, and S. I. Abdelsalam, “Recent trends in computational fluid dynamics,” Front. Phys., vol. 8, p. 453, 2020. https://doi.org/10.3389/fphy.2020.593111.Suche in Google Scholar

[24] R. M. Abumandour, I. M. Eldesoky, M. H. Kamel, M. M. Ahmed, and S. I. Abdelsalam, “Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe,” Z. Naturforsch., vol. 75, no. 8, pp. 727–738, 2020. https://doi.org/10.1515/zna-2020-0054.Suche in Google Scholar

[25] H. Sadaf and S. I. Abdelsalam, “Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions,” RSC Adv., vol. 10, no. 26, pp. 15035–15043, 2020. https://doi.org/10.1039/d0ra01134g.Suche in Google Scholar

[26] M. M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, and S. I. Abdelsalam, “Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries,” Front. Phys., vol. 8, p. 95, 2020. https://doi.org/10.3389/fphy.2020.00095.Suche in Google Scholar

[27] S. I. Abdelsalam and M. M. Bhatti, “Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms,” Appl. Math. Mech., vol. 41, no. 5, pp. 711–724, 2020. https://doi.org/10.1007/s10483-020-2609-6.Suche in Google Scholar

[28] M. Sohail, R. Naz, and S. I. Abdelsalam, “Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model,” Phys. A, vol. 537, p. 122753, 2020. https://doi.org/10.1016/j.physa.2019.122753.Suche in Google Scholar

[29] M. M. Bhatti, S. Z. Alamri, R. Ellahi, and S. I. Abdelsalam, “Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer,” J. Therm. Anal. Calorim., pp. 1–9, 2020.10.1007/s10973-020-10233-9Suche in Google Scholar

[30] I. M. Eldesoky, S. I. Abdelsalam, W. A. El-Askary, and M. M. Ahmed, “The integrated thermal effect in conjunction with slip conditions on peristaltically induced particle-fluid transport in a catheterized pipe,” J. Porous Media, vol. 23, p. 7, 2020. https://doi.org/10.1615/jpormedia.2020025581.Suche in Google Scholar

[31] I. M. Eldesoky, S. I. Abdelsalam, W. A. El-Askary, A. M. El-Refaey, and M. M. Ahmed, “Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube,” Bio NanoScience, vol. 9, no. 3, pp. 723–739, 2019. https://doi.org/10.1007/s12668-019-00651-x.Suche in Google Scholar

[32] Y. Abd. Elmaboud and S. I. Abdelsalam, “DC/AC magnetohydrodynamic-micropump of a generalized Burger’s fluid in an annulus,” Phys. Scripta, vol. 94, no. 11, p. 115209, 2019. https://doi.org/10.1088/1402-4896/ab206d.Suche in Google Scholar

[33] J. Fourier, “Théorie analytique de la chaleur,” in Landmark Writings in Western Mathematics 1640-1940, Paris, Elsevier Science, 1822, pp. 354–365.10.1017/CBO9780511693229Suche in Google Scholar

[34] C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.10.1007/978-3-642-11051-1_5Suche in Google Scholar

[35] C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun., vol. 36, no. 4, pp. 481–486, 2009. https://doi.org/10.1016/j.mechrescom.2008.11.003.Suche in Google Scholar

[36] Z. Abbas, M. Rafiq, and M. Naveed, “Analysis of Eyring–Powell liquid flow in curved channel with Cattaneo–Christov heat flux model,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 8, p. 390, 2018. https://doi.org/10.1007/s40430-018-1312-4.Suche in Google Scholar

[37] S. U. Khan, N. Ali, T. Hayat, and Z. Abbas, “Heat transfer analysis based on Cattaneo–Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface,” Therm. Sci., vol. 23, no. 2, pp. 443–455, 2019.Suche in Google Scholar

[38] S. Ahmad, S. Nadeem, N. Muhammad, and M. N. Khan, “Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects,” J. Therm. Anal. Calorim., pp. 1–13, 2020.10.1007/s10973-020-09504-2Suche in Google Scholar

[39] P. K. Yadav and A. K. Verma, “Analysis of immiscible Newtonian and non-Newtonian micropolar fluid flow through porous cylindrical pipe enclosing a cavity,” Eur. Phys. J. Plus, vol. 135, no. 8, pp. 1–35, 2020. https://doi.org/10.1140/epjp/s13360-020-00672-6.Suche in Google Scholar

[40] P. K. Yadav, S. Jaiswal, J. Y. Puchakatla, and A. N. Filippov, “Poiseuille flow of micropolar-Newtonian fluid through concentric pipes filled with porous medium,” Colloid J., vol. 82, pp. 333–341, 2020. https://doi.org/10.1134/s1061933x20030047.Suche in Google Scholar

[41] S. Jaiswal and P. K. Yadav, “Influence of magnetic field on the Poiseuille flow of immiscible Newtonian fluids through highly porous medium,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 4, pp. 1–15, 2020. https://doi.org/10.1007/s40430-020-2272-z.Suche in Google Scholar

[42] S. Jaiswal and P. K. Yadav, “Flow of micropolar–Newtonian fluids through the composite porous layered channel with movable interfaces,” Arabian J. Sci. Eng., vol. 45, no. 2, pp. 921–934, 2020. https://doi.org/10.1007/s13369-019-04157-2.Suche in Google Scholar

[43] P. K. Yadav, S. Jaiswal, and J. Y. Puchakatla, “Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field,” Math. Methods Appl. Sci., vol. 43, no. 4, pp. 1925–1937, 2020. https://doi.org/10.1002/mma.6016.Suche in Google Scholar

[44] S. Jaiswal and P. K. Yadav, “A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field,” Phys. Fluids, vol. 31, no. 7, 2019, Art no. 071901. https://doi.org/10.1063/1.5100802.Suche in Google Scholar

[45] B. D. Sharma and P. K. Yadav, “A mathematical model of blood flow in narrow blood vessels in presence of magnetic field,” Natl. Acad. Sci. Lett., vol. 42, pp. 239–243, 2019. https://doi.org/10.1007/s40009-018-0718-y.Suche in Google Scholar

[46] B. D. Sharma and P. K. Yadav, “A two-layer mathematical model of blood flow in porous constricted blood vessels,” Transport Porous Media, vol. 120, pp. 239–254, 2017. https://doi.org/10.1007/s11242-017-0918-9.Suche in Google Scholar

Received: 2021-01-05
Revised: 2021-05-07
Accepted: 2021-06-07
Published Online: 2021-06-28
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0006/html?lang=de
Button zum nach oben scrollen