Startseite A cyclic non-singular universe from Gauss–Bonnet and superstring corrections
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A cyclic non-singular universe from Gauss–Bonnet and superstring corrections

  • Rami Ahmad El-Nabulsi EMAIL logo
Veröffentlicht/Copyright: 20. April 2021

Abstract

In this study, we have constructed a viable cosmological model characterized by the presence of the Gauss–Bonnet four-dimensional invariant, higher-order corrections to the low energy effective action motivated from heterotic superstring theory and a general exponential potential comparable to those obtained in higher dimensional supergravities. The field equations were studied by assuming a particular relation between the Hubble parameter and the time derivative of the scalar field. It was observed that, for specific relations between the free parameters in the theory, the universe is cyclic, expands and contracts alternately without singularity with an equation of state oscillating around −1. The model is found to fit the recent astrophysical data.


Corresponding author: Rami Ahmad El-Nabulsi, Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; and Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki, 10671, Athens, Greece, E-mail:

Acknowledgment

I would like to thank the anonymous referee for his useful comments and valuable suggestions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author received no direct funding for this work.

  3. Conflict of interest statement: The author declares that he has no conflicts of interest.

References

[1] A. G. Riess, A. V. Filippenko, P. Challis, et al.., “Observational evidence from supernovae for an accelerating Universe and a cosmological constant,” Astron. J., vol. 116, p. 1009, 1998. https://doi.org/10.1086/300499.Suche in Google Scholar

[2] S. Perlmutter, G. Aldering, G. Goldhaber, et al.., “Measurements of omega and lambda from 42 high-redshift supernovae,” Astrophys. J., vol. 517, p. 565, 1999. https://doi.org/10.1086/307221.Suche in Google Scholar

[3] K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al.., “The third data release of the sloan digital sky survey,” Astron. J., vol. 129, p. 1755, 2005.10.1086/427544Suche in Google Scholar

[4] D. N. Spergel, L. Verde, H. V. Peiris, et al.., “First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl., vol. 148, p. 175, 2003. https://doi.org/10.1086/377226.Suche in Google Scholar

[5] E. Komatsu, J. Dunkley, M. R. Nolta, et al.., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl., vol. 180, p. 330, 2009. https://doi.org/10.1088/0067-0049/180/2/330.Suche in Google Scholar

[6] K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al.., “The second data release of the sloan digital sky survey,” Astron. J., vol. 128, p. 502, 2004.10.1086/421365Suche in Google Scholar

[7] S. Masi, P. A. R. Ade, J. J. Bock, et al.., “The BOOMRanG experiment and the curvature of the universe,” Prog. Part. Nucl. Phys., vol. 48, pp. 243–261, 2002. https://doi.org/10.1016/s0146-6410(02)00131-x.Suche in Google Scholar

[8] A. H. Jaffe, P. A. R. Ade, A. Balbi, et al.., “Cosmology from maxima-1, boomrang and COBE/DMR CMB observations,” Phys. Rev. Lett., vol. 86, pp. 3475–3479, 2001. https://doi.org/10.1103/physrevlett.86.3475.Suche in Google Scholar

[9] A. D. Linde, Particle Physics and Inflationary Cosmology, Chur, Switzerland, Hardwood Academic, 1990.10.1201/9780367807788Suche in Google Scholar

[10] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge, UK, Cambridge University Press, 2000.10.1017/CBO9781139175180Suche in Google Scholar

[11] I. Zlatev, L. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett., vol. 82, p. 896, 1999. https://doi.org/10.1103/physrevlett.82.896.Suche in Google Scholar

[12] R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, “Phantom energy: dark energy with w < −1 a cosmic doomsday,” Phys. Rev. Lett., vol. 91, 2003, Art no. 071301. https://doi.org/10.1103/physrevlett.91.071301.Suche in Google Scholar

[13] A. Sen, “Tachyon matter,” J. High Energy Phys., vol. 7, 2002, Art no. 65.10.1088/1126-6708/2002/07/065Suche in Google Scholar

[14] A. Sen, “Field theory of tachyon matter,” Mod. Phys. Lett., vol. A17, p. 1797, 2002. https://doi.org/10.1142/s0217732302008071.Suche in Google Scholar

[15] A. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Phys. Lett. B, vol. 511, pp. 265–268, 2001. https://doi.org/10.1016/s0370-2693(01)00571-8.Suche in Google Scholar

[16] Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, “Quintom cosmology: theoretical implications and observations,” Phys. Rep., vol. 493, p. 1, 2010. https://doi.org/10.1016/j.physrep.2010.04.001.Suche in Google Scholar

[17] P. Horava and D. Minic, “Probable values of the cosmological constant in a holographic theory,” Phys. Rev. Lett., vol. 85, pp. 1610–1613, 2000. https://doi.org/10.1103/PhysRevLett.85.1610.Suche in Google Scholar

[18] S. Roy, S. Chattopadhyay, and A. Pasqua, “A study on the dependence of the dimensionless Brans–Dicke parameter on the scalar field and their time dependence,” Eur. Phys. J. Plus, vol. 128, pp. 1–16, 2013. https://doi.org/10.1140/epjp/i2013-13147-4.Suche in Google Scholar

[19] S. Roy, D. Laha, A. A. Sangma, and I. Pal, “A study on the expanding universe based on a model of the time variation of its matter content in the framework of Brans–Dicke theory,” Int. J. Curr. Res., vol. 8, pp. 32251–32259, 2016.Suche in Google Scholar

[20] T. P. Sotiriou and V. Faraoni, “f(R) theories of gravity,” Rev. Mod. Phys., vol. 82, pp. 451–497, 2010. https://doi.org/10.1103/revmodphys.82.451.Suche in Google Scholar

[21] R. Ferraro and F. Fiorini, “Modified teleparallel gravity: inflation without an inflaton,” Phys. Rev. D, vol. 75, p. 084031, 2007. https://doi.org/10.1103/physrevd.75.084031.Suche in Google Scholar

[22] M. Zubair, M. Zeeshan, and S. Waheed, “Cosmic evolution in the background of R(1 + αQ) gravity,” Mod. Phys. Lett. A, vol. 34, p. 1950253, 2019. https://doi.org/10.1142/s0217732319502535.Suche in Google Scholar

[23] M. Sharif and M. Zubair, “Thermodynamics in f(R, T) theory of gravity,” J. Cosmol. Astropart. Phys., vol. 3, p. 28, 2012.10.1088/1475-7516/2012/03/028Suche in Google Scholar

[24] S. Deser and R. P. Woodard, “Nonlocal cosmology,” Phys. Rev. Lett., vol. 99, p. 111301, 2007. https://doi.org/10.1103/physrevlett.99.111301.Suche in Google Scholar

[25] C. Deffayet and R. P. Woodard, “Reconstructing the distortion function for nonlocal cosmology,” J. Cosmol. Astropart. Phys., vol. 0908, p. 023, 2009. https://doi.org/10.1088/1475-7516/2009/08/023.Suche in Google Scholar

[26] U. Debnath, S. Chattopadhyay, and M. Jamil, “Fractional action cosmology: some dark energy models in emergent, logamediate and intermediate scenarios of the universe,” J. Theor. Appl. Phys., vol. 7, p. 25, 2013. https://doi.org/10.1186/2251-7235-7-25.Suche in Google Scholar

[27] V. S. Shchigolev, “Testing fractional action cosmology,” Eur. Phys. J. Plus, vol. 131, p. 256, 2016. https://doi.org/10.1140/epjp/i2016-16256-6.Suche in Google Scholar

[28] S. Chattopadhyay and A. Pasqua, “Reconstruction of modified holographic Ricci dark energy in El-Nabulsi fractional action cosmology,” Int. J. Theor. Phys., vol. 7, p. 22, 2013. https://doi.org/10.1186/2251-7235-7-22.Suche in Google Scholar

[29] R. A. El-Nabulsi, “Gravitons in fractional action cosmology,” Int. J. Theor. Phys., vol. 51, p. 3978, 2012. https://doi.org/10.1007/s10773-012-1290-8.Suche in Google Scholar

[30] R. A. El-Nabulsi, “Fractional derivatives generalization of Einstein’s field equations,” Indian J. Phys., vol. 87, pp. 195–200, 2013. https://doi.org/10.1007/s12648-012-0201-4.Suche in Google Scholar

[31] R. A. El-Nabulsi, “Oscillating flat FRW dark energy dominated cosmology from periodic functional approach,” Commun. Theor. Phys., vol. 54, p. 16, 2010.10.1088/0253-6102/54/1/03Suche in Google Scholar

[32] R. A. El-Nabulsi, “Fractional action oscillating phantom cosmology with conformal coupling,” Eur. Phys. J. Plus, vol. 103, p. 102, 2015.Suche in Google Scholar

[33] R. A. El-Nabulsi, “A modified gravity theory with time-dependent exponent,” Eur. Phys. J. Plus, vol. 126, p. 114, 2011. https://doi.org/10.1140/epjp/i2011-11114-9.Suche in Google Scholar

[34] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution,” Phys. Rep., vol. 692, pp. 1–104, 2017. https://doi.org/10.1016/j.physrep.2017.06.001.Suche in Google Scholar

[35] S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Phys. Rep., vol. 505, pp. 59–144, 2011. https://doi.org/10.1016/j.physrep.2011.04.001.Suche in Google Scholar

[36] S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geomet. Methods Mod. Phys., vol. 4, pp. 115–146, 2007. https://doi.org/10.1142/s0219887807001928.Suche in Google Scholar

[37] R. A. El-Nabulsi, “Dark energy in five-dimensional Brans–Dicke cosmology with dimensional reduction,” Res. Astron. Astrophys., vol. 7, p. 759, 2011. https://doi.org/10.1088/1674-4527/11/7/002.Suche in Google Scholar

[38] L.-e. Qiang, Y. Ma, M. Han, and D. Yu, “5-dimensional Brans–Dicke theory and cosmic acceleration,” Phys. Rev. D, vol. 71, p. 061501, 2005. https://doi.org/10.1103/physrevd.71.061501.Suche in Google Scholar

[39] R. A. El-Nabulsi, “Living with phantoms fields in a sheet space–time,” Gen. Relat. Gravit., vol. 42, p. 1381, 2010. https://doi.org/10.1007/s10714-009-0911-x.Suche in Google Scholar

[40] R. A. El-Nabulsi, “Noncommutative accelerated multidimensional universe dominated by quintessence,” Astrophys. Space Sci., vol. 326, p. 163, 2010. https://doi.org/10.1007/s10509-009-0259-4.Suche in Google Scholar

[41] R. A. El-Nabulsi, “Effective 3-brane Brans–Dicke cosmology,” Mod. Phys. Lett. A, vol. 6, p. 401, 2008. https://doi.org/10.1142/s0217732308026327.Suche in Google Scholar

[42] R. A. El-Nabulsi, “Accelerated d-dimensional compactified universe in Gauss–Bonnet-dilatonic scalar gravity from brane/M-theory,” Chin. Phys. Lett., vol. 25, p. 2785, 2008.10.1088/0256-307X/25/8/014Suche in Google Scholar

[43] R. A. El-Nabulsi, “Phase transitions in the early universe with negatively induced supergravity cosmological constant,” Chin. Phys. Lett., vol. 23, p. 1124, 2006.10.1088/0256-307X/23/5/017Suche in Google Scholar

[44] R. A. El-Nabulsi, “Modified braneworld cosmologies in the presence of stringy corrections coupled to a canonical scalar field,” Int. J. Mod. Phys., vol. 18, p. 691, 2009. https://doi.org/10.1142/s0218271809014716.Suche in Google Scholar

[45] R. A. El-Nabulsi, “Charged Randall–Sundrum braneworld type II with higher order curvature corrections from superstring arguments and dominated by quintessence,” Commun. Theor. Phys., vol. 53, p. 869, 2010.10.1088/0253-6102/53/5/16Suche in Google Scholar

[46] R. A. El-Nabulsi, “Scalar tensor cosmology with kinetic, Gauss–Bonnet and nonminimal derivative couplings and supersymmetric loop corrected potential,” Commun. Theor. Phys., vol. 71, pp. 831–832, 2019. https://doi.org/10.1088/0253-6102/71/7/831.Suche in Google Scholar

[47] R. A. El-Nabulsi, “Conformal cosmology with a complex scalar field and a gauge-mediated supersymmetry breaking potential,” Z. Naturforsch., vol. 73, pp. 363–369, 2018. https://doi.org/10.1515/zna-2017-0440.Suche in Google Scholar

[48] W.-F. Wang and S.-Z. Yang, “Exact inflationary solution to nonminimally coupled scalar field,” Chin. Phys. Lett., vol. 22, p. 1296, 2005.10.1088/0256-307X/22/5/076Suche in Google Scholar

[49] R. A. El-Nabulsi, “Symmetry breaking and conformal coupling with a generalized Higgs potential and the role of the generalized Duffin–Loret equation in the early universe,” Eur. Phys. J. Plus, vol. 129, p. 220, 2014.10.1140/epjp/i2014-14220-2Suche in Google Scholar

[50] R. A. El-Nabulsi, “Effective cosmological constant from supergravity arguments and non-minimal coupling,” Phys. Lett. B, vol. 619, pp. 26–29, 2005. https://doi.org/10.1016/j.physletb.2005.06.002.Suche in Google Scholar

[51] R. A. El-Nabulsi, “Dark energy from logarithmically modified gravity and deformed Coleman–Weinberg potential,” Res. Astron. Astrophys., vol. 11, p. 759, 2011. https://doi.org/10.1088/1674-4527/11/7/002.Suche in Google Scholar

[52] R. A. El-Nabulsi, “Accelerated cosmic expansion from Gauss–Bonnet curvature corrections, nonminimal coupling, and infrared second-order gauge gravity,” Astrophys. Space Sci., vol. 325, pp. 149–152, 2010. https://doi.org/10.1007/s10509-009-0209-1.Suche in Google Scholar

[53] M. R. Setare and E. N. Saridakis, “Non-minimally coupled canonical, phantom and quintom models of holographic dark energy,” Phys. Lett. B, vol. 671, pp. 331–338, 2009. https://doi.org/10.1016/j.physletb.2008.12.026.Suche in Google Scholar

[54] D. J. Holden and D. Wands, “Self-similar cosmological solutions with a non-minimally coupled scalar field,” Phys. Rev. D, vol. 61, p. 043506, 2000. https://doi.org/10.1103/physrevd.61.043506.Suche in Google Scholar

[55] R. A. El-Nabulsi, “Some late-time cosmological aspects of a Gauss–Bonnet gravity with nonminimal coupling a la Brans–Dicke: solutions and perspectives,” Can. J. Phys., vol. 91, pp. 300–321, 2013. https://doi.org/10.1139/cjp-2012-0366.Suche in Google Scholar

[56] R. A. El-Nabulsi, “Effective cosmology a la Brans–Dicke with a non-minimally coupling massive inflaton field interacting with minimally coupling massless field,” Braz. J. Phys., vol. 40, pp. 273–282, 2010.Suche in Google Scholar

[57] N. Banerjee and K. Ganguly, “Generalised scalar-tensor theory and the cosmic acceleration,” Int. J. Mod. Phys., vol. 18, pp. 445–451, 2009. https://doi.org/10.1142/s0218271809014479.Suche in Google Scholar

[58] R. A. El-Nabulsi, “A cosmology governed by a fractional differential equation and the generalized Kilbas–Saigo–Mittag–Leffler function,” Int. J. Theor. Phys., vol. 55, p. 625, 2016. https://doi.org/10.1007/s10773-015-2700-5.Suche in Google Scholar

[59] R. A. El-Nabulsi, “Implications of the Ornstein–Uhlenbeck-like fractional differential equation in cosmology,” Rev. Mexic. Fisica, vol. 62, p. 240, 2016.Suche in Google Scholar

[60] R. A. El-Nabulsi, “Cosmology with a fractional action principle,” Rom. Rep. Phys., vol. 59, no. 3, p. 763, 2007.Suche in Google Scholar

[61] R. A. El-Nabulsi, “Fractional action-like variational approach, perturbed Einstein’s gravity and new cosmology,” Fiz. B, vol. 19, no. 2, p. 103, 2010.Suche in Google Scholar

[62] R. A. El-Nabulsi, “Fractional dynamics, fractional weak bosons masses and physics beyond the standard model,” Chaos, Solit. Fractals, vol. 41, pp. 2262–2270, 2009.10.1016/j.chaos.2008.08.033Suche in Google Scholar

[63] R. A. El-Nabulsi, “Non-minimal coupling in fractional action cosmology,” Indian J. Phys., vol. 87, p. 835, 2013. https://doi.org/10.1007/s12648-013-0295-3.Suche in Google Scholar

[64] R. A. El-Nabulsi, “Fractional action oscillating phantom cosmology with conformal coupling,” Eur. Phys. J. Plus, vol. 130, p. 102, 2015.10.1140/epjp/i2015-15102-9Suche in Google Scholar

[65] R. A. El-Nabulsi, “Fractional action cosmology with variable order parameter,” Int. J. Theor. Phys., vol. 56, no. 4, pp. 1159–1182, 2017. https://doi.org/10.1007/s10773-016-3260-z.Suche in Google Scholar

[66] R. A. El-Nabulsi, “Accelerated expansion from a modified quadratic gravity,” Astrophys. Space Sci., vol. 332, pp. 491–495, 2010.10.1007/s10509-010-0518-4Suche in Google Scholar

[67] R. A. El-Nabulsi, “Dark energy from logarithmic modified gravity and deformed Coleman–Weinberg potential,” Res. Astron. Astrophys., vol. 11, pp. 759–766, 2011. https://doi.org/10.1088/1674-4527/11/7/002.Suche in Google Scholar

[68] R. A. El-Nabulsi, “Dark energy in five-dimensional Brans–Dicke cosmology with dimensional reduction,” Res. Astron. Astrophys., vol. 11, pp. 888–894, 2011. https://doi.org/10.1088/1674-4527/11/8/002.Suche in Google Scholar

[69] R. A. El-Nabulsi, “Exact solution of a tachyon oscillating cosmology with a supergravity tracking potential,” Eur. Phys. J. Plus, vol. 128, p. 55, 2013. https://doi.org/10.1515/zna-2017-0440.Suche in Google Scholar

[70] R. A. El-Nabulsi, “Scalar tensor cosmology with kinetic, Gauss–Bonnet and nonminimal derivative couplings and supersymmetric loop corrected potential,” Commun. Theor. Phys., vol. 17, p. 831, 2019. https://doi.org/10.1088/0253-6102/71/7/831.Suche in Google Scholar

[71] R. A. El-Nabulsi, “Non-minimally conformally coupling cosmology with multiple vacua potential with cubic-quintic-septic Duffing oscillator properties,” Z. Naturforsch., vol. 70, pp. 685–694, 2015. https://doi.org/10.1515/zna-2015-0171.Suche in Google Scholar

[72] R. A. El-Nabulsi, “Five-dimensional Brans–Dicke compactified universe dominated by a varying speed of light,” Mod. Phys. Lett. A, vol. 35, p. 2050252, 2020. https://doi.org/10.1142/s0217732320502521.Suche in Google Scholar

[73] R. A. El-Nabulsi, “Nonstandard Lagrangian cosmology,” J. Theor. Appl. Phys., vol. 7, p. 58, 2013. https://doi.org/10.1186/2251-7235-7-58.Suche in Google Scholar

[74] G. Abbas and M. Tahir, “Dynamical instability of non-adiabatic gravitating source in Gauss–Bonnet gravity,” Eur. Phys. J. A, vol. 55, p. 103, 2019. https://doi.org/10.1140/epja/i2019-12776-4.Suche in Google Scholar

[75] G. Abbas and M. Tahir, “Models of anisotropic self-gravitating source in Einstein–Gauss–Bonnet gravity,” Adv. High Energy Phys., vol. 2018, 2018, Art no. 7420546. https://doi.org/10.1155/2018/7420546.Suche in Google Scholar

[76] N. Banerjee and T. Paul, “Scalar field collapse in Gauss–Bonnet gravity,” Eur. Phys. J. C, vol. 78, p. 130, 2018. https://doi.org/10.1140/epjc/s10052-018-5615-5.Suche in Google Scholar

[77] M. Tahir and G. Abbas, “Spherically symmetric gravitational collapse in Einstein Gauss–Bonnet gravity,” Int. J. Geomet. Methods Mod. Phys., vol. 16, p. 1950194, 2014.10.1142/S0219887819501949Suche in Google Scholar

[78] M. Tahir and G. Abbas, “Instability of collapsing source under expansion-free condition in Einstein Gauss–Bonnet gravity,” Chin. J. Phys., vol. 61, pp. 8–21, 2019. https://doi.org/10.1016/j.cjph.2019.07.003.Suche in Google Scholar

[79] R. A. El-Nabulsi, “Dark energy from “extended modified gravity” and Gauss–Bonnet invariant term,” Astrophys. Space Sci., vol. 327, pp. 161–165, 2010. https://doi.org/10.1007/s10509-010-0330-1.Suche in Google Scholar

[80] R. A. El-Nabulsi, “Scalar tensor cosmology with kinetic, Gauss–Bonnet and nonminimal derivative couplings and supersymmetric loop corrected potential,” Commun. Theor. Phys., vol. 71, p. 831, 2019. https://doi.org/10.1088/0253-6102/71/7/831.Suche in Google Scholar

[81] R. A. El-Nabulsi, “Accelerated magnetic Gauss–Bonnet cosmology,” Fiz. B, vol. 17, pp. 455–462, 2008.Suche in Google Scholar

[82] S. Nojiri and S. D. Odintsov, “Modified f(R) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe,” Phys. Rev. D, vol. 74, p. 086005, 2006. https://doi.org/10.1103/physrevd.74.086005.Suche in Google Scholar

[83] S. Nojiri, S. D. Odintsov, and M. Sami, “Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction,” Phys. Rev. D, vol. 74, p. 046004, 2006. https://doi.org/10.1103/physrevd.74.046004.Suche in Google Scholar

[84] L. N. Granda, “Late-time cosmological scenarios from scalar field with Gauss–Bonnet and non-minimal kinetic couplings,” Int. J. Theor. Phys., vol. 51, pp. 2813–2829, 2012. https://doi.org/10.1007/s10773-012-1157-z.Suche in Google Scholar

[85] L. N. Granda, “Dark energy from scalar field with Gauss–Bonnet and non-minimal kinetic coupling,” Mod. Phys. Lett. A, vol. 27, p. 1250018, 2012. https://doi.org/10.1142/s0217732312500186.Suche in Google Scholar

[86] R. A. El-Nabulsi, “Maxwell brane cosmology with higher-order string curvature corrections, a nonminimally coupled scalar field, dark matter-dark energy interaction and a varying speed of light,” Int. J. Mod. Phys., vol. 18, pp. 289–318, 2009. https://doi.org/10.1142/s0218271809014431.Suche in Google Scholar

[87] S. Shahidi, “Cosmology of a higher derivative scalar theory with non-minimal Maxwell coupling,” Eur. Phys. J. C, vol. 79, p. 448, 2019. https://doi.org/10.1140/epjc/s10052-019-6960-8.Suche in Google Scholar

[88] R. A. El-Nabulsi, “Dynamical vacuum energy and phantom divide-line cross in scalar cosmology,” Indian J. Phys., vol. 87, pp. 303–307, 2013. https://doi.org/10.1007/s12648-012-0200-5.Suche in Google Scholar

[89] A. Tripathi, A. Sangwan, and H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift,” J. Cosmol. Astropart. Phys., vol. 06, p. 012, 2017. https://doi.org/10.1088/1475-7516/2017/06/012.Suche in Google Scholar

[90] W.-F. Wang, “Exact solution is chaotic inflation model with negative potential,” Chin. Phys. Lett., vol. 20, pp. 593–595, 2004.10.1088/0256-307X/20/4/344Suche in Google Scholar

[91] S.-W. Chen, S.-Z. Yang, X.-Z. Hao, and X.-W. Liu, “A kind of exact inflationary solution in the chaotic inflation model to non-minimally coupled scalar field,” Chin. Phys. Lett., vol. 25, pp. 3162–3164, 2008.10.1088/0256-307X/25/9/019Suche in Google Scholar

[92] R. A. El-Nabulsi, “Five-dimensional Brans–Dicke M1 × R3 × S1 cosmology with chameleon scalar field,” Astrophys. Space Sci., vol. 327, pp. 111–115, 2010. https://doi.org/10.1007/s10509-010-0281-6.Suche in Google Scholar

[93] T. Barreiro, E. J. Copeland, and N. J. Nunes, “Quintessence arising from exponential potentials,” Phys. Rev. D, vol. 61, p. 127301, 2000. https://doi.org/10.1103/physrevd.61.127301.Suche in Google Scholar

[94] L. A. Urena-Lopez, “Scalar phantom energy as a cosmological dynamical system,” J. Cosmol. Astropart. Phys., vol. 09, p. 013, 2005. https://doi.org/10.1088/1475-7516/2005/09/013.Suche in Google Scholar

[95] I. P. Neupane, “Accelerating cosmologies from exponential potentials,” Class. Quantum Grav., vol. 21, p. 4383, 2004. https://doi.org/10.1088/0264-9381/21/18/007.Suche in Google Scholar

[96] A. D. Linde, “Inflation and quantum cosmology,” in Three Hundred Years of Gravitation, S. W. Hawking and W. Israel, Eds., Cambridge, Cambridge University Press, 1987, pp. 604–630.10.1017/CBO9780511564178.016Suche in Google Scholar

[97] P. M. Cowdall, H. Lu, C. N. Pope, K. Stelle, and P. K. Townsend, “Domain walls in massive supergravities,” Nucl. Phys. B, vol. 486, pp. 49–76, 1997. https://doi.org/10.1016/s0550-3213(96)00609-8.Suche in Google Scholar

[98] S. Pan, E. N. Saridakis, and W. Yang, “Observational constraints on oscillating dark-energy parameterization,” Phys. Rev. D, vol. 98, p. 063510, 2018. https://doi.org/10.1103/physrevd.98.063510.Suche in Google Scholar

[99] S. Dodelson, M. Kaplinghat, and E. Stewart, “Solving the coincidence problem: tracking oscillating energy,” Phys. Rev. Lett., vol. 85, p. 5276, 2000. https://doi.org/10.1103/physrevlett.85.5276.Suche in Google Scholar

[100] B. Feng, M. Li, Y. S. Piao, and X. Zhang, “Oscillating quintom and the recurrent universe,” Phys. Lett. B, vol. 634, p. 101, 2006. https://doi.org/10.1016/j.physletb.2006.01.066.Suche in Google Scholar

[101] S. Kumar, “Observational constraints on Hubble constant and deceleration parameter in power-law cosmology,” Mon. Not. Roy. Astron. Soc., vol. 422, pp. 2532–2538, 2012. https://doi.org/10.1111/j.1365-2966.2012.20810.x.Suche in Google Scholar

[102] O. Hrycyna, M. Szydlowski, and M. Kamionka, “Dynamics and cosmological constraints on Brans-Dicke cosmology,” Phys. Rev. D, vol. 90, p. 124040, 2014. https://doi.org/10.1103/physrevd.90.124040.Suche in Google Scholar

[103] J. E. Lidsey, D. J. Mulryne, N. J. Nunes, and R. Tavakol, “Oscillatory universes in loop quantum cosmology and initial conditions for inflation,” Phys. Rev. D, vol. 70, p. 063521, 2004. https://doi.org/10.1103/physrevd.70.063521.Suche in Google Scholar

[104] R. Penrose, “The basic ideas of conformal cyclic cosmology,” AIP Conf. Proc., vol. 1446, p. 233, 2012.10.1063/1.4727997Suche in Google Scholar

[105] H. H. Xiong, Y.-F. Cai, T. Qiu, Y.-S. Piao, and X. Zhang, “Oscillating universe with quintom matter,” Phys. Lett. B, vol. 666, pp. 212–217, 2008. https://doi.org/10.1016/j.physletb.2008.07.053.Suche in Google Scholar

[106] J. Kehayias and R. J. Scherrer, “Oscillating and static universes from a single barotropic fluid,” J. Cosmol. Astropart. Phys., vol. 12, p. 015, 2015. https://doi.org/10.1088/1475-7516/2015/12/015.Suche in Google Scholar

[107] M. Rezaei, “Observational constraints on the oscillating dark energy cosmologies,” Mon. Not. Roy. Astron. Soc., vol. 485, pp. 550–559, 2019. https://doi.org/10.1093/mnras/stz394.Suche in Google Scholar

[108] M. Shen and L. Zhao, “Oscillating quintom model with time periodic varying deceleration parameter,” Chin. Phys. Lett., vol. 31, p. 010401, 2014. https://doi.org/10.1088/0256-307x/31/1/010401.Suche in Google Scholar

[109] P. K. Sahoo, “A periodic varying deceleration parameter in f(R, T) gravity,” Mod. Phys. Lett. A, vol. 33, p. 1850193, 2018. https://doi.org/10.1142/s0217732318501936.Suche in Google Scholar

[110] D. Jain, A. Dev, and J. S. Alcaniz, “Cosmological bounds on oscillating dark energy models,” Phys. Lett. B, vol. 656, pp. 15–18, 2007. https://doi.org/10.1016/j.physletb.2007.09.023.Suche in Google Scholar

Received: 2020-12-21
Revised: 2021-03-27
Accepted: 2021-03-28
Published Online: 2021-04-20
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0348/html
Button zum nach oben scrollen