Abstract
The two-parameter van der Waals (vdW) equation of state is generalized, by adding another two parameters to the attractive term. General relations between thermodynamic functions of the generalized vdW equation and the hard sphere gas are derived. The cubic equation of the generalized vdW is solved and the critical points (Pc, Vc, Tc) are obtained for general k. The critical properties of the vdW real gas such as the isothermal compressibility KT, the isobaric expansion coefficient α and the isobaric heat capacity CP are calculated exactly. The temperature dependence of KT, α and CP is investigated close to the critical point on the critical isobar path Pr = 1(P = Pc). Numerical calculations for KT and CP are presented above and below Pr.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] J. D. van der Waals, Ph.D. Thesis, Leiden Univ., 1873; English translation: J. D. van der Waals, On the Continuity of the Gaseous and Liquid States, Dover, Mineola, NY (1988).Suche in Google Scholar
[2] L. D. Landau and E. M. Lifshitz, Statistical Physics, Oxford, Pergamon, 1975.Suche in Google Scholar
[3] W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and Statistical Mechanics, New York, Springer-Verlag, Inc., 1995.10.1007/978-1-4612-0827-3Suche in Google Scholar
[4] D. V. Schroeder, An Introduction to Thermal Physics, San Francisco, Addison Wesley Lonngman, 2000.Suche in Google Scholar
[5] O. Redlich and J. N. S. Kwong, “On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions,” Chem. Rev., vol. 44, p. 233, 1949. https://doi.org/10.1021/cr60137a013.Suche in Google Scholar
[6] G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., vol. 27, p. 1197, 1972. https://doi.org/10.1016/0009-2509(72)80096-4.Suche in Google Scholar
[7] D.-Y. Peng and D. B. Robinson, “A new two-constant equation of state,” Ind. Eng. Chem. Fund., vol. 15, p. 59, 1976. https://doi.org/10.1021/i160057a011.Suche in Google Scholar
[8] D. Jou and C. Pérez-García, “Generalized van der Waals equation for nonequilibrium fluids,” Phys. Rev. A, vol. 28, p. 2541, 1983. https://doi.org/10.1103/physreva.28.2541.Suche in Google Scholar
[9] Y. Adachi, B. C.-Y. Lu, and H. Sugie, “A four-parameter equation of state,” Fluid Phase Equil., vol. 11, p. 29, 1983. https://doi.org/10.1016/0378-3812(83)85004-3.Suche in Google Scholar
[10] M. M. Martynyuk and R. Balasubramanian, “Equation of state for fluid alkali metals: Binodal,” Int. J. Thermophys., vol. 16, no. 2, p. 533, 1995. https://doi.org/10.1007/bf01441919.Suche in Google Scholar
[11] H. Hinojosa-Gómez, J. F. Barragán-Aroche, and E. R. Bazúa-Rueda, “A modification to the Peng-Robinson-fitted equation of state for pure substances,” Fluid Phase Equil., vol. 298, p. 12, 2010. https://doi.org/10.1016/j.fluid.2010.06.022.Suche in Google Scholar
[12] A. A. Sobko, “Description of Evaporation Curve by the Generalized Van-der-Waals-Berthelot Equation. Part I, Journal of Physical Science and Application,” J. Phys. Sci. Appl., vol. 4, no. 8, p. 524, 2014.Suche in Google Scholar
[13] J. S. Lopez-Echeverry, S. Reif-Acherman, and E. Araujo-Lopez, “Peng-Robinson equation of state: 40 years through cubics,” Fluid Phase Equil., vol. 447, p. 39, 2017. https://doi.org/10.1016/j.fluid.2017.05.007.Suche in Google Scholar
[14] R. Balasubramanian and G. Theertharaman, “A new four-parameter generalized van der Waals equation of state: metastable state of group IV elements,” Int. J. Sci. Res., vol. 7, no. 4, p. 165, 2018.Suche in Google Scholar
[15] C. N. Yang and T. D. Lee, “Statistical theory of equations of state and phase transitions. 1. Theory of condensation,” Phys. Rev., vol. 87, p. 410, 1952. https://doi.org/10.1103/physrev.87.404.Suche in Google Scholar
[16] J.-H. Park and S.-W. Kim, “Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas,” New J. Phys., vol. 13, p. 033003, 2011. https://doi.org/10.1088/1367-2630/13/3/033003.Suche in Google Scholar
[17] K. Huang, Statistical Mechanics, New York,John Wiley & Sons. Inc., 1987.Suche in Google Scholar
[18] M. E. Fisher, “The theory of equilibrium critical phenomena,” Rep. Prog. Phys., vol. 30, p. 615, 1967. https://doi.org/10.1088/0034-4885/30/2/306.Suche in Google Scholar
[19] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, New York, NY, Oxford University Press, 1971.Suche in Google Scholar
[20] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, Singapore, World Scientific, 2000.10.1142/4016Suche in Google Scholar
[21] K. Michaelian and I. Santamaría-Holek, “Critical analysis of negative heat capacity in nanoclusters,” Europhys. Lett., vol. 79, p. 43001, 2007. https://doi.org/10.1209/0295-5075/79/43001.Suche in Google Scholar
[22](a) W. Thirring, “Systems with negative specific heat,” Z. Phys., vol. 235, p. 339, 1970. https://doi.org/10.1007/bf01403177.Suche in Google Scholar
(b) D. Lynden-Bell, Proc. XXth IUPAP Int. Conf on Stat. Phys., Paris, July 20–24, 1998, condmat/9812172.Suche in Google Scholar
[23] M. Ď. Agostino, F. Gulminelli, P. Chomaz, et al.., “Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition,” Phys. Lett. B, vol. 473, p. 219, 2000.10.1016/S0370-2693(99)01486-0Suche in Google Scholar
[24](a) M. Schmidt, R. Kusche, W. Kronmller, B. v. Issendorff, and H. Haberland, “Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms,” Phys. Rev. Lett., vol. 79, p. 99, 1997.10.1103/PhysRevLett.79.99Suche in Google Scholar
(b) M. Schmidt, R. Kusche, B. v. Issendorff, and H. Haberland, “Irregular variations in the melting point of size-selected atomic clusters,” Nature (London), vol. 393, p. 238, 1998.10.1038/30415Suche in Google Scholar
(c) M. Schmidt, R. Kusche, T. Hippler, et al.., “Negative heat capacity for a cluster of 147 sodium atoms,” Phys. Rev. Lett., vol. 86, p. 1191, 2001.10.1103/PhysRevLett.86.1191Suche in Google Scholar
[25] M. Ď. Agostino, R. Bougault, F. Gulminelli, et al.., “On the reliability of negative heat capacity measurements,” Nucl. Phys. A, vol. 699, p. 795, 2002.10.1016/S0375-9474(01)01287-8Suche in Google Scholar
[26] D. H. E. Gross, “Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space,” Phys. Rep., vol. 279, p. 119, 1997. https://doi.org/10.1016/s0370-1573(96)00024-5.Suche in Google Scholar
[27] P. Chomaz, V. Duflot, and F. Gulminelli, “Caloric curves and energy fluctuations in the microcanonical liquid-gas phase transition,” Phys. Rev. Lett., vol. 85, p. 3587, 2000. https://doi.org/10.1103/physrevlett.85.3587.Suche in Google Scholar
[28] L. G. Moretto, J. B. Elliott, L. Phair, and G. J. Wozniak, “Negative heat capacities and first order phase transitions in nuclei,” Phys. Rev. C, vol. 66, p. 041601, 2002. https://doi.org/10.1103/physrevc.66.041601.Suche in Google Scholar
[29] C. B. Das, S. Das Gupta, and A. Z. Mekjian, “Negative specific heat in a thermodynamic model of multifragmentation,” Phys. Rev. C, vol. 68, p. 014607, 2003. https://doi.org/10.1103/physrevc.68.014607.Suche in Google Scholar
[30] C. Das, S. Dasgupta, W. Lynch, A. Mekjian, and M. Tsang, “The thermodynamic model for nuclear multifragmentation,” Phys. Rep., vol. 406, p. 1, 2005. https://doi.org/10.1016/j.physrep.2004.10.002.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zna-2021-0002).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Simultaneous effects of Brownian motion and thermophoretic force on Eyring–Powell fluid through porous geometry
- Gravitation & Cosmology
- A cyclic non-singular universe from Gauss–Bonnet and superstring corrections
- Hydrodynamics
- Mathematical modelling of classical Graetz–Nusselt problem for axisymmetric tube and flat channel using the Carreau fluid model: a numerical benchmark study
- Solid State Physics & Materials Science
- Enhancement of thermal conductivity and ultrasonic properties by incorporating CdS nanoparticles to PVA nanofluids
- Pressure and size dependent investigation of ultrasonic and thermal properties of ScRu intermetallic
- Thermodynamics & Statistical Physics
- Analytical treatment of the critical properties of a generalized van der Waals equation
- Thermodynamic equilibrium of a fluid column under the influence of gravity
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Simultaneous effects of Brownian motion and thermophoretic force on Eyring–Powell fluid through porous geometry
- Gravitation & Cosmology
- A cyclic non-singular universe from Gauss–Bonnet and superstring corrections
- Hydrodynamics
- Mathematical modelling of classical Graetz–Nusselt problem for axisymmetric tube and flat channel using the Carreau fluid model: a numerical benchmark study
- Solid State Physics & Materials Science
- Enhancement of thermal conductivity and ultrasonic properties by incorporating CdS nanoparticles to PVA nanofluids
- Pressure and size dependent investigation of ultrasonic and thermal properties of ScRu intermetallic
- Thermodynamics & Statistical Physics
- Analytical treatment of the critical properties of a generalized van der Waals equation
- Thermodynamic equilibrium of a fluid column under the influence of gravity