Home Energy levels and transition probabilities of N+, F3+, and Ne4+ ions
Article
Licensed
Unlicensed Requires Authentication

Energy levels and transition probabilities of N+, F3+, and Ne4+ ions

  • Yan Sun EMAIL logo , Feng Hu , WenYi Li , DongDong Liu , MaoFei Mei and BingCong Gou
Published/Copyright: November 6, 2020

Abstract

Term energies, oscillator strengths, transition probabilities, and transition wavelengths among the low-lying states of (1s2)2s22p2, 2s22p3p, 2s2p3, 2s22p3s, and 2s22p3d 1,3,5L L = S, P, D, F in N+, F3+, and Ne4+ ions were calculated by using the multiconfiguration Rayleigh-Ritz variation method and restricted variation method. The transition oscillator strengths and transition probabilities for the electric dipole transitions are both given in length and velocity gauges. Deviations between these two gauge values are discussed. The calculated atomic parameters are in good agreement with the observed experimental results and other theoretical data. Furthermore, the uncertainty of each electric dipole transition is estimated. Several uncertainties of transition parameters are improved when comparing with values from national institute of standards and technology NIST database. Atomic parameters presented in this paper should be useful for identifying the levels as well as for precise spectral modeling in astrophysical and laboratory plasmas in the future work.


Corresponding author: Yan Sun, School of Physics and New energy, Xuzhou Institute of Technology, Xuzhou 221018, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 11604284, 51506184

Funding source: Six Talent Peaks Project of Jiangsu Province

Award Identifier / Grant number: JY-105

Funding source: QinLan project of Jiangsu Province of China

Funding source: the State Key Laboratory Open Fund of Millimeter Waves of Southeast University

Award Identifier / Grant number: K202105

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China, under grant nos. 11604284 and 51506184. Yan Sun and DongDong Liu was supported by the Six Talent Peaks project of Jiangsu Province of China under grant no. JY-105, QinLan project of Jiangsu Province of China, and the State Key Laboratory Open Fund of Millimeter Waves of Southeast University under grant no. K202105.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. J. Mao, J. S. Kaastra, M. Mehdipour, A. J. J. Raassen, L. Y. Gu, and J. M. Miller, “Density diagnostics of ionized outflows in active galactic nuclei,” Astron. Astrophys., vol. 607, p. A100, 2017, https://doi.org/10.1051/0004-6361/201731378.10.1051/0004-6361/201731378Search in Google Scholar

[2] O. Zatsarinny, T. W. Gorczyca, K. T. Korista, N. R. Badnell, and D. W. Savin, “Dielectronic recombination data for dynamic finite-density plasmas,” Astron. Astrophys., vol. 417, p. 1173, 2004. https://doi.org/10.1051/0004-6361:20034174.10.1051/0004-6361:20034174Search in Google Scholar

[3] B. C. Faecett, “Calculated wavelengths, oscillator strengths, and energy levels for allowed 2–2 and 2–3 transitions for ions in the C-like isoelectronic sequence between F IV and Ni XXIII,” Atomic Data Nucl. Data Tables, vol. 37, p. 367, 1987. https://doi.org/10.1016/0092-640X(87)90024-6.10.1016/0092-640X(87)90024-6Search in Google Scholar

[4] B. C. Faecett, “Oscillator strengths of allowed transitions for C I, N II, and O III,” Atomic Data Nucl. Data Tables, vol. 37 p. 411, 1987. https://doi.org/10.1016/0092-640X(87)90025-8.10.1016/0092-640X(87)90025-8Search in Google Scholar

[5] R. D. Cowan and D. Robert. “Cowan’s atomic structure code[Online].” Available: https://www.tcd.ie/Physics/people/Cormac.McGuinness/Cowan/.Search in Google Scholar

[6] R. D. Cowan, Theory of Atomic Structure and Spectra, Berkeley, California, USA, University of California Press, 1981.10.1525/9780520906150Search in Google Scholar

[7] D. Luo and A. K. Pradhan, “Atomic data for opacity calculations. XI. The carbon isoelectronic sequence,” J. Physiol. Biochem., vol. 22, p. 3377, 1989, https://doi.org/10.1088/0953-4075/22/21/005.10.1088/0953-4075/22/21/005Search in Google Scholar

[8] C. Mendoza, C. J. Zeippen, and P. J. Storey, “Atomic data from the IRON Project,” Astron. AstroPhys. Suppl., vol. 135, p. 159, 1999, https://doi.org/10.1051/aas:1999445.10.1051/aas:1999445Search in Google Scholar

[9] W. Eissner, M. Jones, and H. Nussbaumer, “Techniques for the calculation of atomic structures and radiative data including relativistic corrections,” Comput. Phys. Commun., vol. 8, p. 27, 1974, https://doi.org/10.1016/0010-4655(74)90019-8.10.1016/0010-4655(74)90019-8Search in Google Scholar

[10] E. S. Conlon, F. P. Keenan, and K. M. Aggarwal, “Electron impact excitation rates for transitions in carbon-like F IV, Na VI, AI VIII, P X, S XI, CI XII, Ar XIII and K XIV,” Phys. Scripta, vol. 45, p. 309, 1992, https://doi.org/10.1088/0031-8949/45/4/004.10.1088/0031-8949/45/4/004Search in Google Scholar

[11] D. C. Griffin and N. R. Badnell, “Electron-impact excitation of Ne4+,” Phys. Rev. A, vol. 33, p. 4389, 2000, https://doi.org/10.1088/0953-4075/33/20/315.10.1088/0953-4075/33/20/315Search in Google Scholar

[12] K.M. Aggarwal, “Oscillator Strengths for Transitions in C‐like Ne, Mg, Si, and S Ions,” Astrophys. J. Suppl., vol. 118, p. 589, 1998, https://doi.org/10.1086/313147.10.1086/313147Search in Google Scholar

[13] K. M. Aggarwal, F. P. Keenan, and A. Z. Msezane, “Oscillator strengths for transitions in C‐like ions between F iv and Ar xiii,” Astrophys. J. Suppl., vol. 136, p. 763, 2001, https://doi.org/10.1086/321800.10.1086/321800Search in Google Scholar

[14] A. Hibbert, “CIV3 – A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths,” Comput. Phys. Commun., vol. 9, p. 141, 1975, https://doi.org/10.1016/0010-46557590103-4.10.1016/0010-4655(75)90103-4Search in Google Scholar

[15] C. F. Fischer and G. Tachiev, “Breit–Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences,” Atomic Data Nucl. Data Tables, vol. 87, p. 1, 2004. https://doi.org/10.1016/j.adt.2004.02.001.10.1016/j.adt.2004.02.001Search in Google Scholar

[16] G. Tachiev and C. F. Fischer, “Breit-Pauli energy levels and transition rates for the carbonlike sequence,” Can. J. Phys., vol. 79, p. 955, 2001, https://doi.org/10.1139/p01-059.10.1139/p01-059Search in Google Scholar

[17] D. G. Ellis, “Ultraviolet transition probabilities in N ii,” Phys. Rev. A, vol. 47, p. 161, 1993, https://doi.org/10.1103/physreva.47.161.10.1103/PhysRevA.47.161Search in Google Scholar

[18] C. F. Fischer, “The MCHF atomic-structure package,” Comput. Phys. Commun., vol. 64, p. 369, 1991. https://doi.org/10.1016/0010-4655(91)90133-6.10.1016/0010-4655(91)90133-6Search in Google Scholar

[19] P. Jönsson and J. Bieroń, “Relativistic configuration interaction calculations of energy levels, isotope shifts, hyperfine structures, and transition rates in the 2s22p2-2s2p3transition array for the carbon-like sequence,” J. Physiol. Biochem., vol. 43, p. 074023, 2010, https://doi.org/10.1088/0953-4075/43/7/074023.10.1088/0953-4075/43/7/074023Search in Google Scholar

[20] P. Jönsson, P. Rynkun, and G. Gaigalas, “Energies, E1, M1, and E2 transition rates, hyperfine structures, and Landé factors for states of the 2s22p2, 2s2p3, and 2p4 configurations in carbon-like ions between F IV and Ni XXIII,” Atomic Data Nucl. Data Tables, vol. 97, p. 648, 2011, https://doi.org/10.1016/j.adt.2011.05.001.10.1016/j.adt.2011.05.001Search in Google Scholar

[21] C. Nazé, S. Verdebout, P. Rynkun, G. Gaigalas, M. Godefroid, and P. Jönsson, “Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations,” Atomic Data Nucl. Data Tables, vol. 100, p. 1197, 2014, https://doi.org/10.1016/j.adt.2014.02.004.10.1016/j.adt.2014.02.004Search in Google Scholar

[22] P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, New York, Springer, 2007.10.1007/978-0-387-35069-1Search in Google Scholar

[23] C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, “Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions,” J. Phys. B Atom. Mol. Opt. Phys., vol. 49, p. 182004, 2016, https://doi.org/10.1088/0953-4075/49/18/182004.10.1088/0953-4075/49/18/182004Search in Google Scholar

[24] A. Al. Modlej, R. A. B. Alraddadi, and N. B. Nessib, “Energy levels and oscillator strengths for carbon isoelectronic sequence from C I to Ne V,” Eur. Phys. J. Plus, vol. 133, p. 379, 2018. https://doi.org/10.1140/epjp/i2018-12192-9.10.1140/epjp/i2018-12192-9Search in Google Scholar

[25] N. Alonizan, R. Qindeel, and N. B. Nessib, “Atomic structure calculations for neutral oxygen,” Int. J. Spectrosc., vol. 2016, p. 1697561, 2016. http://doi.org/10.1103/PhysRevA.92.023401.10.1155/2016/1697561Search in Google Scholar

[26] A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy, Cambridge, UK, Cambridge University Press, 2011.10.1017/CBO9780511975349Search in Google Scholar

[27] P. Beiersdorfer, E. Träbert, J. K. Lepson, N. S. Brickhouse, and L. Golub, “High-resolution laboratory measurements of coronal lines in the 198-218 Å region,” Astrophys. J., vol. 788, p. 25, 2014, https://doi.org/10.1088/0004-637x/788/1/25.10.1088/0004-637X/788/1/25Search in Google Scholar

[28] J. M. Bizau, D. Cubaynes, S. Guilbaud, et al.., “K-shell photoionization of O + and O 2 + ions: Experiment and theory,” Phys. Rev. A, vol. 92, p. 023401, 2015. http://doi.org/10.1103/PhysRevA.92.023401.10.1103/PhysRevA.92.023401Search in Google Scholar

[29] A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.7.1), Gaithersburg, MD, National Institute of Standards and Technology, 2019 [Online]. Available at: https://physics.nist.gov/asd [2020, July 14].Search in Google Scholar

[30] K. P. Dere, G. Del. Zanna, P. R. Young, E. Landi, and R. Sutherland, “Chianti – an atomic database for emission lines. Paper 15, version 9.0 improvements for the X-ray satellite lines,” Astrophys. J. Suppl., vol. 241, p. 2, 2019, https://doi.org/10.3847/1538-4365/ab05cf.10.3847/1538-4365/ab05cfSearch in Google Scholar

[31] Y. Sun, F. Hu, C. C. Sang, et al., “Energy levels and transition probabilities from the Rayleigh-Ritz variation method: C I and O III,” J. Quant. Spectrosc. Radiat. Transf., vol. 217, p. 388, 2018.10.1016/j.jqsrt.2018.06.018Search in Google Scholar

[32] H. Y. Yang and K. T. Chung, “Energy, fine-structure, and hyperfine-structure studies of the core-excited states 1s2s2p2 (5P) and 1s2p3 (5S) for Be-like systems,” Phys. Rev. A, vol. 51, p. 3621, 1995.10.1103/PhysRevA.51.3621Search in Google Scholar

[33] Y. Sun, D. D. Liu, M. F. Mei, et al., “Energies, fine structures, and transitions of the core-excited sextet states 6Se,o(n) and 6Pe,o(n) (n=1-5) of B-like ions,” J. Quant. Spectrosc. Radiat. Transf., vol. 167, p. 145, 2015.10.1016/j.jqsrt.2015.08.008Search in Google Scholar

[34] Y. Sun, F. Chen, L. Zhuo, and B. C. Gou, “Energies, fine structures, and radiative lifetimes for the multiexcited quartet states of B-like oxygen,” Int. J. Quant. Chem., vol. 112, p. 1114, 2012, https://doi.org/10.1002/qua.23094.10.1002/qua.23094Search in Google Scholar

[35] Y. Sun, C. C. Sang, F. Hu, et al., “Rydberg series for quartet states of Li-like sulfur ion,” J. Quant. Spectrosc. Radiat. Transf., vol. 187, p. 30, 2017.10.1016/j.jqsrt.2016.09.006Search in Google Scholar

[36] B. F. Davis and K. T. Chung, “Saddle-point complex-rotation method for the(1s2s2s)2Sresonance in He−, Li I, Be II, and B III,” Phys. Rev. A, vol. 29, p. 1878, 1984, https://doi.org/10.1103/physreva.29.1878.10.1103/PhysRevA.29.1878Search in Google Scholar

[37] Y. Sun, F. Chen, and B. C. Gou, “Energy levels, Auger branching ratios, and radiative rates of the core-excited states of B-like carbon,” J. Chem. Phys., vol. 135, p. 124309, 2011, https://doi.org/10.1063/1.3643334.10.1063/1.3643334Search in Google Scholar

[38] G.W. F. Drake, “Quantum electrodynamic effects in few-electron atomic systems,” Adv. At. Mol. Phys., vol. 18, p. 399, 1982, https://doi.org/10.1016/s0065-21990860246-8.10.1016/S0065-2199(08)60246-8Search in Google Scholar

[39] K. T. Chung, X. W. Zhu, and Z. W. Wang, “Ionization potential for ground states of berylliumlike systems,” Phys. Rev. A, vol. 47, p. 1740, 1993, https://doi.org/10.1103/physreva.47.1740.10.1103/PhysRevA.47.1740Search in Google Scholar

[40] B. Lin, H. G. Berry, T. Shibata, et al., “1s2s2p23s 6P – 1s2p33s 6So Transitions in O IV,” Phys. Rev., vol. 67, p. 062507, 2003, https://doi.org/10.1103/physreva.67.062507.10.1103/PhysRevA.67.062507Search in Google Scholar

[41] W. C. Martin and W. L. Wiese, “Atomic, molecular, and optical physics handbook (version 2.2).” Gaithersburg, MD, National Institute of Standards and Technology, 2002. Available: https://www.nist.gov/pml/atomic-spectroscopy-compendium-basic-ideas-notation-data-and-formulas.Search in Google Scholar

Received: 2020-08-14
Accepted: 2020-10-11
Published Online: 2020-11-06
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0226/html?lang=en
Scroll to top button