Abstract
We have performed unbiased searches for the global minimum structures of (FeS)n+ (n=1–5) clusters using the CALYPSO method combined with density functional theory geometric optimisation. A large number of low-lying isomers are optimised at the B3PW91/6-311+G* theory level. Accurate ab initio calculations and harmonic vibrational analyses are undertaken to ensure that the optimised geometries are true minimum. They show that the most stable structures begin to exhibit three-dimensional (3D) configurations at n=3. The relative stabilities of (FeS)n+ clusters for the ground-state structures are analysed on the basis of binding energies and HOMO-LUMO gaps. The theoretical results indicate that the binding energies of (FeS)n+ tend to increase with cluster size. The maxima of HOMO-LUMO gaps (3.88 eV) for the most stable configurations appear at (FeS)+. Moreover, we have found that the (FeS)2+ cluster possesses the lowest local magnetic moments compared to the other species. The origin of this magnetic phenomenon is also analysed in detail.
Acknowledgments
This work was supported by the National Natural Science Foundation of China nos. 11274235 and 11304167, Postdoctoral Science Foundation of China nos. 20110491317 and 2014T70280, Open Project of State Key Laboratory of Superhard Materials no. 201405, Program for Science and Technology Innovation Talents in Universities of Henan Province no. 15HASTIT020.
References
[1] J. Ulises Reveles and S. N. Khanna, Phys. Rev. B 72, 165413 (2005).10.1103/PhysRevB.72.165413Search in Google Scholar
[2] T. V. Harris and R. K. Szilagyi, J. Comput. Chem. 35, 540 (2014).10.1002/jcc.23518Search in Google Scholar
[3] L. Ma, J. G. Wang, Y. Y. Hao, and G. H. Wang, Comp. Mater. Sci. 68, 166 (2013).10.1016/j.commatsci.2012.10.014Search in Google Scholar
[4] L. P. Ding, X. Y. Kuang, P. Shao, and M. M. Zhong, J. Alloy. Compd. 573, 133 (2013).10.1016/j.jallcom.2013.04.022Search in Google Scholar
[5] A. T. P. Carvalho, A. F. S. Teixeira, and M. J. Ramos, J. Comput. Chem. 34, 1540 (2013).10.1002/jcc.23287Search in Google Scholar
[6] J. H. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014).10.1021/ja501260hSearch in Google Scholar
[7] R. Lill, Nature 460, 831 (2009).10.1038/nature08301Search in Google Scholar PubMed
[8] D. Rickard and G. W. Luther, Chem. Rev. 107, 514 (2007).10.1021/cr0503658Search in Google Scholar
[9] C. Binda, A. Coda, A. Aliverti, G. Zanetti, and A. Mattevi, Acta. Cryst. D 54, 1353 (1998).10.1107/S0907444998005836Search in Google Scholar
[10] P. J. Kiley and H. Beinert, Curr. Opin. Microbiol. 6, 181 (2003).10.1016/S1369-5274(03)00039-0Search in Google Scholar
[11] G. H. Stout, S. Turley, L. C. Sieker, and L. H. Jensen, Proc. Natl. Acad. Sci. 85, 1020 (1988).10.1073/pnas.85.4.1020Search in Google Scholar
[12] H. Beinert, FASEB J 4, 2483 (1990).10.1096/fasebj.4.8.2185975Search in Google Scholar PubMed
[13] P. J. Mitchell, Biochem. 97, 1 (1985).10.1016/S0046-8177(85)80221-5Search in Google Scholar
[14] A. L. Han, T. Yagi, and T. Hatefi, Arch. Biochem. Biophys. 275, 166 (1989).10.1016/0003-9861(89)90360-3Search in Google Scholar
[15] H. Beinert, M. C. Kennedy, and C. D. Stout, Chem. Rev. 96, 2335 (1996).10.1021/cr950040zSearch in Google Scholar
[16] O. A. Lukianova and S. S. David, Curr. Opin. Chem. Biol. 9, 145 (2005).Search in Google Scholar
[17] E. M. Maes, M. J. Knapp, R. S. Czernuszewicz, and D. N. Hendrickson, J. Phys. Chem. B 104, 10878 (2000).10.1021/jp0003104Search in Google Scholar
[18] H. J. Zhai, B. Kiran, and L. S. Wang, J. Phys. Chem. A 107, 2821 (2003).10.1021/jp027867zSearch in Google Scholar
[19] A. Nakajima, T. Hayase, F. Hayakawa, and K. Kaya, Chem. Phys. Lett. 208, 381 (1997).10.1016/S0009-2614(97)01162-7Search in Google Scholar
[20] D. O. Hayward and B. M. W. Trapnell, Chemisorption (2nd ed.), Butterworths, London 1964.Search in Google Scholar
[21] Z. D. Yu, N. Zhang, X. J. Wu, Z. Gao, Q. Zhu, and F. N. Kong, J. Chem. Phys. 99, 1765 (1993).10.1063/1.465293Search in Google Scholar
[22] R. L. Whetten, D. M. Cox, D. J. Trevorand, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).10.1021/j100250a004Search in Google Scholar
[23] J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012).10.1063/1.4746757Search in Google Scholar
[24] Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B 82, 094116 (2010).10.1103/PhysRevB.82.094116Search in Google Scholar
[25] Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008Search in Google Scholar
[26] Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma, J. Chem. Phys. 137, 224108 (2012).10.1063/1.4769731Search in Google Scholar
[27] L. Zhu, H. Y. Liu, C. J. Pickard, G. T. Zou, and Y. M. Ma, Nature Chem. 6, 644 (2014).10.1038/nchem.1925Search in Google Scholar
[28] S. H. Lu, Y. C. Wang, H. Y. Liu, M. S. Miao, and Y. M. Ma, Nature Commun. 5, 3666 (2014).Search in Google Scholar
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Pittsburgh, PA 2009.Search in Google Scholar
[30] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).10.1063/1.464913Search in Google Scholar
[31] C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).10.1103/PhysRevB.37.785Search in Google Scholar
[32] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Search in Google Scholar
[33] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244Search in Google Scholar
[34] J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic Structure of Solids, Akademie Verlag, Berlin 1991.Search in Google Scholar
[35] J. N. Harvey, C. Heinemann, A. Fiedler, D. Schroder, and H. Schwarz, Chem. Eur. J. 2, 1230 (1996).10.1002/chem.19960021008Search in Google Scholar
[36] T. J. MacMahon, T. C. Jackson, and B. S. Freiser, J. Am. Chem. Soc. 111, 422 (1989).10.1021/ja00184a001Search in Google Scholar
[37] R. F. Barrow and C. Cousins, Adv. High. Temp. Chem. 4, 161 (1971).10.1016/B978-0-12-021504-1.50012-4Search in Google Scholar
[38] T. C. Devore and H. F. Franzen, High. Temp. Sci. 7, 220 (1975).Search in Google Scholar
[39] K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold, New York 1974.Search in Google Scholar
[40] N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, and K. Kaya, J. Chem. Phys. 104, 3413 (1996).10.1063/1.471048Search in Google Scholar
[41] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).10.1063/1.458517Search in Google Scholar
[42] T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).10.1002/jcc.22885Search in Google Scholar
[43] T. Lu and F. W. Chen, J. Mol. Graph. Model. 38, 314 (2012).10.1016/j.jmgm.2012.07.004Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids
Articles in the same Issue
- Frontmatter
- Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide
- Lax Pair, Conservation Laws, Solitons, and Rogue Waves for a Generalised Nonlinear Schrödinger–Maxwell–Bloch System under the Nonlinear Tunneling Effect for an Inhomogeneous Erbium-Doped Silica Fibre
- Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors
- Rogue-Wave Interaction of a Nonlinear Schrödinger Model for the Alpha Helical Protein
- Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil–Gas–Water Three-Phase Flow
- Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters
- Explanation of the Quantum-Mechanical Particle-Wave Duality through the Emission of Watt-Less Gravitational Waves by the Dirac Equation
- Closed Analytical Solutions of the D-Dimensional Schrödinger Equation with Deformed Woods–Saxon Potential Plus Double Ring-Shaped Potential
- Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
- The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
- Rapid Communication
- Extrinsic and Intrinsic Contributions to Plasmon Peaks in Solids