Home The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model
Article
Licensed
Unlicensed Requires Authentication

The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno’s Model: A Revised Model

  • Rohana Abdul Hamid , Roslinda Nazar and Ioan Pop EMAIL logo
Published/Copyright: December 8, 2015

Abstract

A numerical study on the stagnation-point boundary layer flow of a viscous and incompressible (Newtonian) fluid past a stretching/shrinking sheet with the fluid suction using Buongiorno’s model is considered. The main focus of this article is the effects of the non-alignment of the flow and the surface of the sheet. We have also studied the problem using a new boundary condition that is more physically realistic which assumes that the nanoparticle fraction at the surface is passively controlled. The governing equations of this problem are reduced to the ordinary differential equations using some similarity transformations which are then solved using the bvp4c function in Matlab. From the results obtained, we concluded that the effect of the non-alignment function is the same as in the regular fluid or nanofluid. However, it is found that the fluid suction can reduce the effect of the non-alignment at the surface. Dual solutions have also been discovered in this problem and from the stability analysis it is found that the first solution is stable while the second solution is not stable.


Corresponding author: Ioan Pop, Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania, E-mail:

Acknowledgments

This work was supported by research grants AP-2013-009 from the Universiti Kebangsaan Malaysia and FRGS TOP DOWN from the Ministry of Education, Malaysia. The authors wish to express their very sincere thanks to the Reviewers for the valuable comments and suggestions.

References

[1] M. Ja’fari and A. B. Rahimi, Sci. Iran. 20, 152 (2013).Search in Google Scholar

[2] C. Y. Wang, Int. J. Nonlinear Mech. 43, 377 (2008).10.1016/j.ijnonlinmec.2007.12.021Search in Google Scholar

[3] T. Fan, H. Xu, and I. Pop, Int. Commun. Heat Mass Transfer 37, 1440 (2010).10.1016/j.icheatmasstransfer.2010.08.002Search in Google Scholar

[4] S. Ahmad, M. Ashraf, and K. S. Syed, World Appl. Sci. J. 15, 835 (2011).Search in Google Scholar

[5] Y. Y. Lok, A. Ishak, and I. Pop, Int. J. Numer. Methods Heat Fluid Flow 21, 61 (2011).10.1108/09615531111095076Search in Google Scholar

[6] T. R. Mahapatra and S. K. Nandy, J. Appl. Fluid Mech. 6, 121 (2013).Search in Google Scholar

[7] K. Bhattacharyya, Chem. Eng. Res. Bull. 15, 12 (2011).10.3329/cerb.v15i1.6524Search in Google Scholar

[8] K. Bhattacharyya, M. G. Arif, and W. A. Pramanik, Acta Tech. 57, 1 (2012).Search in Google Scholar

[9] K. Bhattacharyya, Ain Shams Eng. J. 4, 259 (2013).10.1016/j.asej.2012.07.002Search in Google Scholar

[10] K. Bhattacharyya and I. Pop, Magnetohydrodynamics 47, 337 (2011).10.22364/mhd.47.4.2Search in Google Scholar

[11] K. Bhattacharyya and G. C. Layek, Int. J. Heat Mass Transfer 54, 302 (2011).10.1016/j.ijheatmasstransfer.2010.09.043Search in Google Scholar

[12] K. Bhattacharyya, T. Hayat, and A. Alsaedi, J. Appl. Math. Mech. 94, 522 (2014).10.1002/zamm.201200031Search in Google Scholar

[13] N. Najib, N. Bachok, N. M. Arifin, and A. Ishak, Sci. Rep. 4, 4178 (2014).10.1038/srep04178Search in Google Scholar

[14] H. T. Chien, C. I. Tsai, P. H. Chen, and P. Y. Chen, Fifth Int. Conf. on Electronic Packag. Technol. Proceedings, ICEPT2003, 389 (2003).Search in Google Scholar

[15] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, et al., Mater. Lett. 58, 1461 (2004).10.1016/j.matlet.2003.10.009Search in Google Scholar

[16] M. N. Labib, J. Nine, H. Afrianto, H. Chung, and H. Jeong, Int. J. Therm. Sci. 71, 163 (2013).10.1016/j.ijthermalsci.2013.04.003Search in Google Scholar

[17] A. M. Hussein, R. A. Bakar and K. Kadirgama, Case Stud. Therm. Eng. 2, 50 (2014).10.1016/j.csite.2013.12.001Search in Google Scholar

[18] M. M. Derakhshan, M. A. Akhavan-Behabadi, and S. G. Mohseni, Exp. Therm. Fluid Sci. 61, 241 (2015).10.1016/j.expthermflusci.2014.11.005Search in Google Scholar

[19] J. Buongiorno, J. Heat Mass Transfer 128, 240 (2006).10.1115/1.2150834Search in Google Scholar

[20] M. Corcione, M. Cianfrini, and A. Quintino, Int. J. Therm. Sci. 71, 182 (2013).10.1016/j.ijthermalsci.2013.04.005Search in Google Scholar

[21] K. Bhattacharyya and G. C. Layek, Phys. Res. Int. 2014, 1 (2014).10.1155/2014/592536Search in Google Scholar

[22] N. C. Roşca and I. Pop, Comput. Fluids 95, 49 (2014).10.1016/j.compfluid.2014.02.011Search in Google Scholar

[23] F. Garoosi, S. Garoosi, and K. Hooman, Powder Technol. 268, 279 (2014).10.1016/j.powtec.2014.08.006Search in Google Scholar

[24] L. Tham, R. Nazar, and I. Pop, Int. J. Therm. Sci. 84, 21 (2014).10.1016/j.ijthermalsci.2014.04.020Search in Google Scholar

[25] A. V. Kuznetsov and D. A. Nield, Int. J. Heat Mass Transfer 65, 682 (2013).10.1016/j.ijheatmasstransfer.2013.06.054Search in Google Scholar

[26] A. V. Kuznetsov and D. A. Nield, Int. J. Therm. Sci. 77, 126 (2014).10.1016/j.ijthermalsci.2013.10.007Search in Google Scholar

[27] D. A. Nield and A. V. Kuznetsov, Int. J. Heat Mass Transfer 77, 915 (2014).10.1016/j.ijheatmasstransfer.2014.06.020Search in Google Scholar

[28] K. Zaimi, A. Ishak, and I. Pop, PLoS ONE 9, e111743 (2014).10.1371/journal.pone.0111743Search in Google Scholar PubMed PubMed Central

[29] M. M. Rahman, A. V. Roşca, and I. Pop, Int. J. Heat Mass Transfer 77, 1133 (2014).10.1016/j.ijheatmasstransfer.2014.06.013Search in Google Scholar

[30] S. Jinjing, L. Yangwei, L. Lipeng, and W. Qiuhui, Procedia Eng. 80, 380 (2014).Search in Google Scholar

[31] A. Sohankar, M. Khodadadi, and E. Rangraz, Comput. Fluids 109, 155 (2015).10.1016/j.compfluid.2014.12.020Search in Google Scholar

[32] M. Turkyilmazoglu, Int. J. Mech. Sci. 52, 1735 (2010).10.1016/j.ijmecsci.2010.09.007Search in Google Scholar

[33] M. M. T. Hossain, B. Mandal, M. A. Hoossain, Procedia Eng. 56, 134 (2013).10.1016/j.proeng.2013.03.099Search in Google Scholar

[34] J. H. Merkin, J. Eng. Math. 20, 171 (1985).10.1007/BF00042775Search in Google Scholar

[35] P. D. Weidman, D. G. Kubitschek, and A. M. J. Davis, Int. J. Eng. Sci. 44, 730 (2006).10.1016/j.ijengsci.2006.04.005Search in Google Scholar

[36] K. Merrill, M. Beauchesne, J. Previte, J. Paullet, and P. Weidman, Int. J. Heat Mass Transfer 49, 4681 (2006).10.1016/j.ijheatmasstransfer.2006.02.056Search in Google Scholar

[37] S. D. Harris, D. B. Ingham, and I. Pop, Transp. Porous Media 77, 267 (2009).10.1007/s11242-008-9309-6Search in Google Scholar

[38] R. Nazar, A. Noor, K. Jafar, and I. Pop, Int. J. Math. Comput. Phys. Quantum Eng. 8, 776 (2014).Search in Google Scholar

[39] R. A. Hamid, R. Nazar, and I. Pop, Sci. Rep. 5, 14640 (2015).10.1038/srep14640Search in Google Scholar

[40] M. Miklavčič and C. Y. Wang, Quart. Appl. Math. 64, 283 (2006).10.1090/S0033-569X-06-01002-5Search in Google Scholar

[41] A. V. Kuznetsov and D. A. Nield, Int. J. Therm. Sci. 49, 243 (2010).10.1016/j.ijthermalsci.2009.07.015Search in Google Scholar

[42] M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, Int. J. Heat Mass Transfer 54, 5588 (2011).10.1016/j.ijheatmasstransfer.2011.07.021Search in Google Scholar

Received: 2015-6-25
Accepted: 2015-11-1
Published Online: 2015-12-8
Published in Print: 2016-1-1

©2016 by De Gruyter

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0287/html?lang=en
Scroll to top button