Home Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure
Article
Licensed
Unlicensed Requires Authentication

Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure

  • Simon Kroos and Marian Hebenbrock EMAIL logo
Published/Copyright: July 5, 2024

Abstract

New triazole-based tridentate ligands were synthesized, and their crystal structures determined. Through comparison with the crystal structures of the starting materials and related published ligands, dependencies of intermolecular interactions based on the substitution patterns of the triazole motif were identified. In addition to π-stacking interactions, hydrogen bonding, and C–H···π interactions emerged as key players in intermolecular interactions. The observed variations in these interactions will aid in the design of platinum(II) complexes with specific properties.


Corresponding author: Marian Hebenbrock, Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany, E-mail:

Acknowledgments

The authors thankfully acknowledge the financial and non-material support by Prof. Jens Müller and access to the laboratories and chemicals.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Williams, J. A. G. Photochemistry and Photophysics of Coordination Compounds: Platinum. In Photochemistry and Photophysics of Coordination Compounds II, 2007; pp 205–268.10.1007/128_2007_134Search in Google Scholar

2. Hebenbrock, M.; Stegemann, L.; Kösters, J.; Doltsinis, N. L.; Müller, J.; Strassert, C. A. Dalton Trans. 2017, 46, 3160–3169; https://doi.org/10.1039/c7dt00393e.Search in Google Scholar PubMed

3. Hebenbrock, M.; González-Abradelo, D.; Hepp, A.; Meadowcroft, J.; Lefringhausen, N.; Strassert, C. A.; Müller, J. Inorg. Chim. Acta 2021, 516, 119988; https://doi.org/10.1016/j.ica.2020.119988.Search in Google Scholar

4. Maisuls, I.; Boisten, F.; Hebenbrock, M.; Alfke, J.; Schurmann, L.; Jasper-Peter, B.; Hepp, A.; Esselen, M.; Müller, J.; Strassert, C. A. Inorg. Chem. 2022, 61, 9195–9204; https://doi.org/10.1021/acs.inorgchem.2c00753.Search in Google Scholar PubMed

5. Boisten, F.; Maisuls, I.; Schafer, T.; Strassert, C. A.; Müller, J. Chem. Sci. 2023, 14, 2399–2404; https://doi.org/10.1039/d2sc05916a.Search in Google Scholar PubMed PubMed Central

6. Ewen, P. R.; Sanning, J.; Doltsinis, N. L.; Mauro, M.; Strassert, C. A.; Wegner, D. Phys. Rev. Lett. 2013, 111, 267401; https://doi.org/10.1103/physrevlett.111.267401.Search in Google Scholar PubMed

7. Ewen, P. R.; Sanning, J.; Koch, T.; Doltsinis, N. L.; Strassert, C. A.; Wegner, D. Beilstein J. Nanotechnol. 2014, 5, 2248–2258; https://doi.org/10.3762/bjnano.5.234.Search in Google Scholar PubMed PubMed Central

8. Sanning, J.; Ewen, P. R.; Stegemann, L.; Schmidt, J.; Daniliuc, C. G.; Koch, T.; Doltsinis, N. L.; Wegner, D.; Strassert, C. A. Angew. Chem. Int. Ed. 2015, 54, 786–791; https://doi.org/10.1002/anie.201407439.Search in Google Scholar PubMed

9. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

10. Sheldrick, G. M. Shelxl-2019/1; Bruker AXS Inc.: Madison, WI, 2019.Search in Google Scholar

11. Riwar, L. J.; Trapp, N.; Kuhn, B.; Diederich, F. Angew. Chem. Int. Ed. 2017, 56, 11252–11257; https://doi.org/10.1002/anie.201703744.Search in Google Scholar PubMed

12. Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900; https://doi.org/10.1039/c1cp20404a.Search in Google Scholar PubMed

13. Marshall, M. S.; Steele, R. P.; Thanthiriwatte, K. S.; Sherrill, C. D. J. Phys. Chem. A 2009, 113, 13628–13632; https://doi.org/10.1021/jp906086x.Search in Google Scholar PubMed

14. Naseer, M. M.; Bauzá, A.; Alnasr, H.; Jurkschat, K.; Frontera, A. CrystEngComm 2018, 20, 3251–3257; https://doi.org/10.1039/c8ce00666k.Search in Google Scholar

15. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

16. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar

17. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0069).


Received: 2024-02-20
Accepted: 2024-04-17
Published Online: 2024-07-05
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2024-0069/html
Scroll to top button