Home CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12
Article
Licensed
Unlicensed Requires Authentication

CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12

  • Theresa Block , Jutta Kösters , Samir F. Matar , Valentin Antoine Chamard and Rainer Pöttgen EMAIL logo
Published/Copyright: July 15, 2024

Abstract

The zinc-rich intermetallic phases CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 were synthesized by induction-melting of the elements in sealed tantalum ampoules followed by annealing to increase the crystallinity. The samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data: new type, P42/nnm, a = 894.68(14), c = 518.44(9) pm, wR2 = 0.0830, 432 F 2 values, 22 variables for CaRu2Zn10, a = 907.01(10), c = 516.35(6), wR2 = 0.0469, 445 F 2 values, 22 variables for SrRu2Zn10 and a = 902.84(9), c = 515.91(5) pm, wR2 = 0.0469, 434 F 2 values, 22 variables for EuRu2Zn10. The three structures are new ordering variants of the aristotype ThMn12. They are discussed on the basis of a group-subgroup scheme and compared to the known superstructures CaCr2Al10, ErNi10Si2 and ScFe6Ga6. The calcium atoms within the Ca@Ru4Zn16 polyhedra have flattened tetrahedral ruthenium coordination, reducing the calcium site symmetry to 4 2m (instead of 4/mmm in the aristotype). Electronic structure calculations show a substantial charge transfer from calcium to ruthenium and an almost neutral zinc substructure.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank MSc Tim Pier and Prof. Dr. Thomas Jüstel (FH Münster) for letting us use the scanning electron microscope. We thank M. Sc. C. Paulsen for the EDX analyses.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This research was funded by Universität Münster.

  4. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Florio, J. V.; Rundle, R. E.; Snow, A. I. Acta Crystallogr. 1952, 5, 449–457; https://doi.org/10.1107/s0365110x52001337.Search in Google Scholar

2. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

3. Suski, W. The ThMn12-type Compounds of Rare Earths and Actinides: Structure, Magnetic and Related Properties. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr.; Eyring, L., Eds.; Elsevier: Amsterdam, Vol. 22, 1996; pp. 143–294. Chapter 149.10.1016/S0168-1273(96)22006-9Search in Google Scholar

4. Schultz, L.; Wecker, J. J. Appl. Phys. 1988, 64, 5711–5713; https://doi.org/10.1063/1.342234.Search in Google Scholar

5. Buschow, K. H. J. Rep. Prog. Phys. 1991, 54, 1123–1213; https://doi.org/10.1088/0034-4885/54/9/001.Search in Google Scholar

6. Tomey, E.; Bacmann, M.; Fruchard, D.; Soubeyroux, J. L.; Gignoux, D. J. Alloys Compd. 1995, 231, 195–200; https://doi.org/10.1016/0925-8388(95)01814-x.Search in Google Scholar

7. Suski, W. Powder Metal. Metal Ceram 1997, 36, 231–241; https://doi.org/10.1007/bf02676212.Search in Google Scholar

8. Körner, W.; Krugel, G.; Elsässer, C. Sci. Rep. 2016, 6, 24686; https://doi.org/10.1038/srep24686.Search in Google Scholar PubMed PubMed Central

9. Hadjipanayis, G. C.; Gabay, A. M.; Schönhöbel, A. M.; Martín-Cid, A.; Barandiaran, J. M.; Niarchos, D. Engineering 2020, 8, 141–147.10.1016/j.eng.2018.12.011Search in Google Scholar

10. Tozman, P.; Sepehri-Amin, H.; Hono, K. Scripta Mater. 2021, 194, 113686; https://doi.org/10.1016/j.scriptamat.2020.113686.Search in Google Scholar

11. Drake, B. L.; Capan, C.; Cho, J. Y.; Nambu, Y.; Kuga, K.; Xiong, Y. M.; Karki, A. B.; Nakatsuji, S.; Adama, P. W.; Young, D. P.; Chan, J. Y. J. Phys.: Condens. Matter 2010, 22, 066001; https://doi.org/10.1088/0953-8984/22/6/066001.Search in Google Scholar PubMed

12. Cordier, G.; Czech, E.; Ochmann, H.; Schäfer, H. J. Less-Common Met. 1984, 99, 173–185; https://doi.org/10.1016/0022-5088(84)90215-7.Search in Google Scholar

13. Kockelmann, W.; Hofmann, M.; Moze, O.; Kennedy, S. J.; Buschow, K. H. J. Eur. Phys. J. B 2002, 30, 25–32; https://doi.org/10.1140/epjb/e2002-00334-3.Search in Google Scholar

14. Belyavina, N. N.; Markiv, V. Y. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1982, 12, 30–33.Search in Google Scholar

15. Pöttgen, R.; Gulden, Th.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

16. Kußmann, D.; Hoffmann, R.-D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.3.co;2-s.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

17. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

18. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

19. Kohn, W.; Sham, L. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

20. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar

21. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar

22. Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

23. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Search in Google Scholar

24. Eyert, V. Int. J. Quantum Chem. 2000, 77, 1007–1031; https://doi.org/10.1002/(sici)1097-461x(2000)77:6<1007::aid-qua8>3.0.co;2-u.Search in Google Scholar

25. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Search in Google Scholar

26. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

27. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

28. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

29. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282; https://doi.org/10.1515/zkri-2023-0005.Search in Google Scholar

30. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

31. Zarechnyuk, O. S.; Krypyakevych, P. I. Sov. Phys. Crystallogr. 1963, 7, 436–446.Search in Google Scholar

32. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

33. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

34. Müller, U.; Wondratschek, H. International Tables for Crystallography, Vol. A1, Symmetry Relations between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.10.1107/97809553602060000110Search in Google Scholar

35. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum: Berlin, Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar

36. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

37. Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Search in Google Scholar

38. Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Search in Google Scholar

39. Allio, C.; Harbrecht, B. Dalton Trans. 2006, 5352–5356.10.1039/b609434aSearch in Google Scholar PubMed

40. Nasch, T.; Jeitschko, W.; Rodewald, U. Ch. Z. Naturforsch. 1997, 52b, 1023–1030; https://doi.org/10.1515/znb-1997-0901.Search in Google Scholar

41. Kösters, J.; Chamard, V. A.; Matar, S. F.; Block, T.; Pöttgen, R. Z. Kristallogr. 2024, 239, 93–99; https://doi.org/10.1515/zkri-2023-0044.Search in Google Scholar

42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

43. Moze, O.; Kockelmann, W. A.; Hofmann, M.; Cadogan, J. M.; Ryan, D. H.; Buschow, K. H. J. J. Phys.: Condens. Matter 2009, 21, 124210; https://doi.org/10.1088/0953-8984/21/12/124210.Search in Google Scholar PubMed

44. Yaniv, G.; Fuks, D.; Meshi, L. Z. Kristallogr. 2019, 234, 595–603; https://doi.org/10.1515/zkri-2019-0007.Search in Google Scholar

45. Weitzer, F.; Hiebl, K.; Rogl, P.; Grin, Yu. N. J. Appl. Phys. 1990, 68, 3512–3517; https://doi.org/10.1063/1.346336.Search in Google Scholar

46. Zaremba, R.; Muts, I.; Hoffmann, R.-D.; Kalychak, Ya. M.; Zaremba, V. I.; Pöttgen, R. J. Solid State Chem. 2007, 180, 2534–2540; https://doi.org/10.1016/j.jssc.2007.06.029.Search in Google Scholar

47. Niemann, S.; Jeitschko, W. Z. Kristallogr. 1995, 210, 338–341.10.1007/978-3-663-00170-6_7Search in Google Scholar

48. Fehrmann, B.; Jeitschko, W. Z. Naturforsch. 1999, 54b, 1277–1282.10.1515/znb-1999-1010Search in Google Scholar

49. Fehrmann, B.; Jeitschko, W. Inorg. Chem. 1999, 38, 3344–3351; https://doi.org/10.1021/ic990073n.Search in Google Scholar PubMed

50. Yaniv, G.; Vidal, D.; Fuks, D.; Meshi, L. Metals 2020, 10, 422; https://doi.org/10.3390/met10040422.Search in Google Scholar

51. Fulfer, B. W.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. J. Solid State Chem. 2012, 194, 143–150; https://doi.org/10.1016/j.jssc.2012.05.002.Search in Google Scholar

52. Morrison, G.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. J. Phys.: Condens. Matter 2012, 24, 356002; https://doi.org/10.1088/0953-8984/24/35/356002.Search in Google Scholar PubMed

53. Fulfer, B. W.; McAlpin, J. D.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. Crystal Growth Des. 2013, 13, 1543–1550; https://doi.org/10.1021/cg301783q.Search in Google Scholar

Received: 2024-04-12
Accepted: 2024-05-06
Published Online: 2024-07-15
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2024-0084/html
Scroll to top button