Abstract
The zinc-rich intermetallic phases CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 were synthesized by induction-melting of the elements in sealed tantalum ampoules followed by annealing to increase the crystallinity. The samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data: new type, P42/nnm, a = 894.68(14), c = 518.44(9) pm, wR2 = 0.0830, 432 F
2 values, 22 variables for CaRu2Zn10, a = 907.01(10), c = 516.35(6), wR2 = 0.0469, 445 F
2 values, 22 variables for SrRu2Zn10 and a = 902.84(9), c = 515.91(5) pm, wR2 = 0.0469, 434 F
2 values, 22 variables for EuRu2Zn10. The three structures are new ordering variants of the aristotype ThMn12. They are discussed on the basis of a group-subgroup scheme and compared to the known superstructures CaCr2Al10, ErNi10Si2 and ScFe6Ga6. The calcium atoms within the Ca@Ru4Zn16 polyhedra have flattened tetrahedral ruthenium coordination, reducing the calcium site symmetry to
Acknowledgements
We thank MSc Tim Pier and Prof. Dr. Thomas Jüstel (FH Münster) for letting us use the scanning electron microscope. We thank M. Sc. C. Paulsen for the EDX analyses.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Florio, J. V.; Rundle, R. E.; Snow, A. I. Acta Crystallogr. 1952, 5, 449–457; https://doi.org/10.1107/s0365110x52001337.Search in Google Scholar
2. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar
3. Suski, W. The ThMn12-type Compounds of Rare Earths and Actinides: Structure, Magnetic and Related Properties. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr.; Eyring, L., Eds.; Elsevier: Amsterdam, Vol. 22, 1996; pp. 143–294. Chapter 149.10.1016/S0168-1273(96)22006-9Search in Google Scholar
4. Schultz, L.; Wecker, J. J. Appl. Phys. 1988, 64, 5711–5713; https://doi.org/10.1063/1.342234.Search in Google Scholar
5. Buschow, K. H. J. Rep. Prog. Phys. 1991, 54, 1123–1213; https://doi.org/10.1088/0034-4885/54/9/001.Search in Google Scholar
6. Tomey, E.; Bacmann, M.; Fruchard, D.; Soubeyroux, J. L.; Gignoux, D. J. Alloys Compd. 1995, 231, 195–200; https://doi.org/10.1016/0925-8388(95)01814-x.Search in Google Scholar
7. Suski, W. Powder Metal. Metal Ceram 1997, 36, 231–241; https://doi.org/10.1007/bf02676212.Search in Google Scholar
8. Körner, W.; Krugel, G.; Elsässer, C. Sci. Rep. 2016, 6, 24686; https://doi.org/10.1038/srep24686.Search in Google Scholar PubMed PubMed Central
9. Hadjipanayis, G. C.; Gabay, A. M.; Schönhöbel, A. M.; Martín-Cid, A.; Barandiaran, J. M.; Niarchos, D. Engineering 2020, 8, 141–147.10.1016/j.eng.2018.12.011Search in Google Scholar
10. Tozman, P.; Sepehri-Amin, H.; Hono, K. Scripta Mater. 2021, 194, 113686; https://doi.org/10.1016/j.scriptamat.2020.113686.Search in Google Scholar
11. Drake, B. L.; Capan, C.; Cho, J. Y.; Nambu, Y.; Kuga, K.; Xiong, Y. M.; Karki, A. B.; Nakatsuji, S.; Adama, P. W.; Young, D. P.; Chan, J. Y. J. Phys.: Condens. Matter 2010, 22, 066001; https://doi.org/10.1088/0953-8984/22/6/066001.Search in Google Scholar PubMed
12. Cordier, G.; Czech, E.; Ochmann, H.; Schäfer, H. J. Less-Common Met. 1984, 99, 173–185; https://doi.org/10.1016/0022-5088(84)90215-7.Search in Google Scholar
13. Kockelmann, W.; Hofmann, M.; Moze, O.; Kennedy, S. J.; Buschow, K. H. J. Eur. Phys. J. B 2002, 30, 25–32; https://doi.org/10.1140/epjb/e2002-00334-3.Search in Google Scholar
14. Belyavina, N. N.; Markiv, V. Y. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1982, 12, 30–33.Search in Google Scholar
15. Pöttgen, R.; Gulden, Th.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
16. Kußmann, D.; Hoffmann, R.-D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.3.co;2-s.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
17. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
18. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar
19. Kohn, W.; Sham, L. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
20. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar
21. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979; https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar
22. Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
23. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Search in Google Scholar
24. Eyert, V. Int. J. Quantum Chem. 2000, 77, 1007–1031; https://doi.org/10.1002/(sici)1097-461x(2000)77:6<1007::aid-qua8>3.0.co;2-u.Search in Google Scholar
25. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Search in Google Scholar
26. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed
27. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
28. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar
29. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282; https://doi.org/10.1515/zkri-2023-0005.Search in Google Scholar
30. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
31. Zarechnyuk, O. S.; Krypyakevych, P. I. Sov. Phys. Crystallogr. 1963, 7, 436–446.Search in Google Scholar
32. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar
33. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar
34. Müller, U.; Wondratschek, H. International Tables for Crystallography, Vol. A1, Symmetry Relations between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.10.1107/97809553602060000110Search in Google Scholar
35. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum: Berlin, Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar
36. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
37. Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Search in Google Scholar
38. Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Search in Google Scholar
39. Allio, C.; Harbrecht, B. Dalton Trans. 2006, 5352–5356.10.1039/b609434aSearch in Google Scholar PubMed
40. Nasch, T.; Jeitschko, W.; Rodewald, U. Ch. Z. Naturforsch. 1997, 52b, 1023–1030; https://doi.org/10.1515/znb-1997-0901.Search in Google Scholar
41. Kösters, J.; Chamard, V. A.; Matar, S. F.; Block, T.; Pöttgen, R. Z. Kristallogr. 2024, 239, 93–99; https://doi.org/10.1515/zkri-2023-0044.Search in Google Scholar
42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
43. Moze, O.; Kockelmann, W. A.; Hofmann, M.; Cadogan, J. M.; Ryan, D. H.; Buschow, K. H. J. J. Phys.: Condens. Matter 2009, 21, 124210; https://doi.org/10.1088/0953-8984/21/12/124210.Search in Google Scholar PubMed
44. Yaniv, G.; Fuks, D.; Meshi, L. Z. Kristallogr. 2019, 234, 595–603; https://doi.org/10.1515/zkri-2019-0007.Search in Google Scholar
45. Weitzer, F.; Hiebl, K.; Rogl, P.; Grin, Yu. N. J. Appl. Phys. 1990, 68, 3512–3517; https://doi.org/10.1063/1.346336.Search in Google Scholar
46. Zaremba, R.; Muts, I.; Hoffmann, R.-D.; Kalychak, Ya. M.; Zaremba, V. I.; Pöttgen, R. J. Solid State Chem. 2007, 180, 2534–2540; https://doi.org/10.1016/j.jssc.2007.06.029.Search in Google Scholar
47. Niemann, S.; Jeitschko, W. Z. Kristallogr. 1995, 210, 338–341.10.1007/978-3-663-00170-6_7Search in Google Scholar
48. Fehrmann, B.; Jeitschko, W. Z. Naturforsch. 1999, 54b, 1277–1282.10.1515/znb-1999-1010Search in Google Scholar
49. Fehrmann, B.; Jeitschko, W. Inorg. Chem. 1999, 38, 3344–3351; https://doi.org/10.1021/ic990073n.Search in Google Scholar PubMed
50. Yaniv, G.; Vidal, D.; Fuks, D.; Meshi, L. Metals 2020, 10, 422; https://doi.org/10.3390/met10040422.Search in Google Scholar
51. Fulfer, B. W.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. J. Solid State Chem. 2012, 194, 143–150; https://doi.org/10.1016/j.jssc.2012.05.002.Search in Google Scholar
52. Morrison, G.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. J. Phys.: Condens. Matter 2012, 24, 356002; https://doi.org/10.1088/0953-8984/24/35/356002.Search in Google Scholar PubMed
53. Fulfer, B. W.; McAlpin, J. D.; Haldolaarachchige, N.; Young, D. P.; Chan, J. Y. Crystal Growth Des. 2013, 13, 1543–1550; https://doi.org/10.1021/cg301783q.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure
- Inorganic Crystal Structures (Original Paper)
- Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
- [Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3
- Mechanochemical synthesis of (Mg1−xFe x )2SiO4 olivine phases relevant to Martian regolith: structural and spectroscopic characterizations
- CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR
Articles in the same Issue
- Frontmatter
- In this issue
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure
- Inorganic Crystal Structures (Original Paper)
- Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
- [Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3
- Mechanochemical synthesis of (Mg1−xFe x )2SiO4 olivine phases relevant to Martian regolith: structural and spectroscopic characterizations
- CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR