Abstract
New triazole-based tridentate ligands were synthesized, and their crystal structures determined. Through comparison with the crystal structures of the starting materials and related published ligands, dependencies of intermolecular interactions based on the substitution patterns of the triazole motif were identified. In addition to π-stacking interactions, hydrogen bonding, and C–H···π interactions emerged as key players in intermolecular interactions. The observed variations in these interactions will aid in the design of platinum(II) complexes with specific properties.
Acknowledgments
The authors thankfully acknowledge the financial and non-material support by Prof. Jens Müller and access to the laboratories and chemicals.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Williams, J. A. G. Photochemistry and Photophysics of Coordination Compounds: Platinum. In Photochemistry and Photophysics of Coordination Compounds II, 2007; pp 205–268.10.1007/128_2007_134Search in Google Scholar
2. Hebenbrock, M.; Stegemann, L.; Kösters, J.; Doltsinis, N. L.; Müller, J.; Strassert, C. A. Dalton Trans. 2017, 46, 3160–3169; https://doi.org/10.1039/c7dt00393e.Search in Google Scholar PubMed
3. Hebenbrock, M.; González-Abradelo, D.; Hepp, A.; Meadowcroft, J.; Lefringhausen, N.; Strassert, C. A.; Müller, J. Inorg. Chim. Acta 2021, 516, 119988; https://doi.org/10.1016/j.ica.2020.119988.Search in Google Scholar
4. Maisuls, I.; Boisten, F.; Hebenbrock, M.; Alfke, J.; Schurmann, L.; Jasper-Peter, B.; Hepp, A.; Esselen, M.; Müller, J.; Strassert, C. A. Inorg. Chem. 2022, 61, 9195–9204; https://doi.org/10.1021/acs.inorgchem.2c00753.Search in Google Scholar PubMed
5. Boisten, F.; Maisuls, I.; Schafer, T.; Strassert, C. A.; Müller, J. Chem. Sci. 2023, 14, 2399–2404; https://doi.org/10.1039/d2sc05916a.Search in Google Scholar PubMed PubMed Central
6. Ewen, P. R.; Sanning, J.; Doltsinis, N. L.; Mauro, M.; Strassert, C. A.; Wegner, D. Phys. Rev. Lett. 2013, 111, 267401; https://doi.org/10.1103/physrevlett.111.267401.Search in Google Scholar PubMed
7. Ewen, P. R.; Sanning, J.; Koch, T.; Doltsinis, N. L.; Strassert, C. A.; Wegner, D. Beilstein J. Nanotechnol. 2014, 5, 2248–2258; https://doi.org/10.3762/bjnano.5.234.Search in Google Scholar PubMed PubMed Central
8. Sanning, J.; Ewen, P. R.; Stegemann, L.; Schmidt, J.; Daniliuc, C. G.; Koch, T.; Doltsinis, N. L.; Wegner, D.; Strassert, C. A. Angew. Chem. Int. Ed. 2015, 54, 786–791; https://doi.org/10.1002/anie.201407439.Search in Google Scholar PubMed
9. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central
10. Sheldrick, G. M. Shelxl-2019/1; Bruker AXS Inc.: Madison, WI, 2019.Search in Google Scholar
11. Riwar, L. J.; Trapp, N.; Kuhn, B.; Diederich, F. Angew. Chem. Int. Ed. 2017, 56, 11252–11257; https://doi.org/10.1002/anie.201703744.Search in Google Scholar PubMed
12. Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900; https://doi.org/10.1039/c1cp20404a.Search in Google Scholar PubMed
13. Marshall, M. S.; Steele, R. P.; Thanthiriwatte, K. S.; Sherrill, C. D. J. Phys. Chem. A 2009, 113, 13628–13632; https://doi.org/10.1021/jp906086x.Search in Google Scholar PubMed
14. Naseer, M. M.; Bauzá, A.; Alnasr, H.; Jurkschat, K.; Frontera, A. CrystEngComm 2018, 20, 3251–3257; https://doi.org/10.1039/c8ce00666k.Search in Google Scholar
15. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar
16. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar
17. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0069).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure
- Inorganic Crystal Structures (Original Paper)
- Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
- [Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3
- Mechanochemical synthesis of (Mg1−xFe x )2SiO4 olivine phases relevant to Martian regolith: structural and spectroscopic characterizations
- CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR
Articles in the same Issue
- Frontmatter
- In this issue
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural influences of the substituents of tridentate triazole-based ligands – more than just a minor role in the solid-state structure
- Inorganic Crystal Structures (Original Paper)
- Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
- [Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3
- Mechanochemical synthesis of (Mg1−xFe x )2SiO4 olivine phases relevant to Martian regolith: structural and spectroscopic characterizations
- CaRu2Zn10, SrRu2Zn10 and EuRu2Zn10 – new superstructure variants of ThMn12
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR