Home Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)
Article
Licensed
Unlicensed Requires Authentication

Multinuclear solid state NMR spectroscopy of ternary rare-earth silicides RET 2Si2 and germanides LaT 2Ge2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au)

  • Christopher Benndorf , Hellmut Eckert EMAIL logo and Rainer Pöttgen EMAIL logo
Published/Copyright: July 1, 2024

Abstract

A series of ternary rare earth – transition metal – tetrelides RET 2 Tt 2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au; Tt = Si, Ge) was synthesized by arc melting of the elements and subsequent annealing. The samples were characterized by powder X-ray diffraction and in addition, the structures of REOs2Si2 (RE = Y, La, Lu), LaAu2Si2, LaAg2Ge2 and LaAu2Ge2 were refined from single crystal X-ray diffractometer data. The tetrelides crystallize with the ThCr2Si2 type (I4/mmm) except the platinum compounds which adopt the klassengleiche superstructure of the CaBe2Ge2 type (P4/nmm). The transition metal atoms have tetrahedral tetrel coordination and the tetrahedra condense to layers via common edges. The stacking of these layers leads to TtTt bonds in the ThCr2Si2 type phases and heteroatomic TTt bonds in the CaBe2Ge2 type phases. The rare earth atoms fill larger cages within these three-dimensional networks (coordination number 16 with RE@T 8 Tt 8) with site symmetries 4/mmm (ThCr2Si2 type) and 4mm (CaBe2Ge2 type). Systematic multinuclear solid state NMR spectroscopic investigations allowed observing the effect of the involved rare-earth metal, transition metal and tetrel group element, respectively. In particular, 29Si isotropic resonance shifts can be predicted from element-specific increments and interatomic Si–Si bonding interactions manifest themselves in axially symmetric magnetic shielding anisotropies.


Corresponding authors: Hellmut Eckert, Institut für Physikalische Chemie, Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany; and Institute of Physics in São Carlos, University of São Paulo, São Carlos, SP 13560-590, Brazil, E-mail: ; and Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald for collecting the single crystal intensity data.

  1. Research ethics: Not applicable.

  2. Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding authors on well-founded request.

References

1. Andress, K. R.; Alberti, E. Z. Metallkd. 1935, 27, 126–128.10.1163/187124035X00090Search in Google Scholar

2. Zarechnyuk, O. S.; Krypyakevych, P. I.; Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1965, 9, 706–708.Search in Google Scholar

3. Ban, Z.; Sikirica, M. Acta Crystallogr. 1965, 18, 594–599. https://doi.org/10.1107/s0365110x6500141x.Search in Google Scholar

4. Avilov, A. S.; Imamov, R. M.; Pinsker, Z. G. Sov. Phys. Crystallogr. 1971, 16, 542–544.Search in Google Scholar

5. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio, USA, 2022.Search in Google Scholar

6. Szytuła, A.; Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

7. Just, G.; Paufler, P. J. Alloys Compd. 1996, 232, 1–25. https://doi.org/10.1016/0925-8388(95)01939-1.Search in Google Scholar

8. Johnston, D. C. Adv. Phys. 2010, 59, 803–1061. https://doi.org/10.1080/00018732.2010.513480.Search in Google Scholar

9. Shatruk, M. J. Solid State Chem. 2019, 272, 198–209. https://doi.org/10.1016/j.jssc.2019.02.012.Search in Google Scholar

10. Kußmann, D.; Pöttgen, R.; Rodewald, U. C.; Rosenhahn, C.; Mosel, B. D.; Kotzyba, G.; Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Search in Google Scholar

11. Johrendt, D.; Hosono, H.; Hoffmann, R.-D.; Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446. https://doi.org/10.1524/zkri.2011.1363.Search in Google Scholar

12. Kneidinger, F.; Salamakha, L.; Bauer, E.; Zeiringer, I.; Rogl, P.; Blaas-Schenner, C.; Reith, D.; Podloucky, R. Phys. Rev. B 2014, 90, 024504. https://doi.org/10.1103/physrevb.90.024504.Search in Google Scholar

13. Seidel, S.; Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262.10.1515/znb-2021-0022Search in Google Scholar

14. Eckert, H.; Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243. https://doi.org/10.1002/zaac.201000197.Search in Google Scholar

15. Höting, C.; Eckert, H.; Haarmann, F.; Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 1303–1308. https://doi.org/10.1002/zaac.201400026.Search in Google Scholar

16. Höting, C.; Eckert, H.; Matar, S. F.; Rodewald, U. C.; Pöttgen, R. Z. Naturforsch. 2014, 69b, 305–312.10.5560/znb.2014-3319Search in Google Scholar

17. Pöttgen, R.; Gulden, T.; Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

18. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74. https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

19. O’Dell, L. A.; Rossini, A. J.; Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330–335. https://doi.org/10.1016/j.cplett.2008.12.044.Search in Google Scholar

20. Bruker Corp. Topspin (Version 2.1); Bruker Corp.: Karlsruhe, Germany, 2008.Search in Google Scholar

21. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76. https://doi.org/10.1002/mrc.984.Search in Google Scholar

22. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

23. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

24. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352. https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

25. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282. https://doi.org/10.1515/zkri-2023-0005.Search in Google Scholar

26. Eisenmann, B.; May, N.; Müller, W.; Schäfer, H. Z. Naturforsch. 1972, 27b, 1155–1157.10.1515/znb-1972-1008Search in Google Scholar

27. Hoffmann, R.; Zheng, C. J. Phys. Chem. 1985, 89, 4175–4181. https://doi.org/10.1021/j100266a007.Search in Google Scholar

28. Mewis, A. Z. Naturforsch. 1980, 35b, 141–145.10.1515/znb-1980-0205Search in Google Scholar

29. Schmitz, D.; Bronger, W. Z. Anorg. Allg. Chem. 1987, 553, 248–260. https://doi.org/10.1002/zaac.19875531030.Search in Google Scholar

30. von Schnering, H. G.; Türck, R.; Hönle, W.; Peters, K.; Peters, E.-M.; Kremer, R.; Chang, J.-H. Z. Anorg. Allg. Chem. 2002, 628, 2772–2777. https://doi.org/10.1002/1521-3749(200212)628:12<2772::aid-zaac2772>3.0.co;2-g.10.1002/1521-3749(200212)628:12<2772::AID-ZAAC2772>3.0.CO;2-GSearch in Google Scholar

31. Pöttgen, R.; Hönle, W.; von Schnering, H. G. Phosphides: Solid State Chemistry. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed.; Wiley: New York, Vol. VII, 2005; pp. 4255–4308.10.1002/0470862106.ia184Search in Google Scholar

32. Dung, N. D.; Ota, Y.; Sugiyama, K.; Matsuda, T. D.; Haga, Y.; Kindo, K.; Hagiwara, M.; Takeuchi, T.; Settai, R.; Ōnuki, Y. J. Phys. Soc. Jpn. 2009, 78, 024712. https://doi.org/10.1143/jpsj.78.024712.Search in Google Scholar

33. Morozkin, A. V.; Sviridov, I. A. J. Alloys Compd. 2000, 296, L4–L5. https://doi.org/10.1016/s0925-8388(99)00516-2.Search in Google Scholar

34. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

35. Radzieowski, M.; Stegemann, F.; Doerenkamp, C.; Matar, S. F.; Eckert, H.; Dosche, C.; Wittstock, G.; Janka, O. Inorg. Chem. 2019, 58, 7010–7025. https://doi.org/10.1021/acs.inorgchem.9b00648.Search in Google Scholar

36. Höting, C.; Eckert, H.; Haarmann, F.; Winter, F.; Pöttgen, R. Dalton 2014, 43, 7860–7867. https://doi.org/10.1039/c4dt00161c.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0068).


Received: 2024-02-14
Accepted: 2024-04-04
Published Online: 2024-07-01
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2024-0068/html?lang=en
Scroll to top button