Crystal structure of 9,10-bis-((perchloro-phenyl)-ethynyl)anthracene determined from three-dimensional electron diffraction data
Abstract
The crystal structure of the title compound was determined using electron diffraction data collected in continuous rotation mode. The structure was successfully solved and refined kinematically in the monoclinic space group P21/c, with a Z value of 2 and Z′ value of 0.5. Within the crystal structure, the entire molecule is predominantly flat. The molecular packing exhibits a herringbone pattern, distinct from that of the unchlorinated analogue molecule. The largest facet of the crystals, which faces the supporting carbon film, is designated as (0
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gruene, T., Wennmacher, J. T. C., Zaubitzer, C., Holstein, J. J., Heidler, J., Fecteau-Lefebvre, A., De Carlo, S., Müller, E., Goldie, K. N., Regeni, I., Li, T., Santiso-Quinones, G., Steinfeld, G., Handschin, S., van Genderen, E., van Bokhoven, J. A., Clever, G. H., Pantelic, R. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 2018, 57, 16313; https://doi.org/10.1002/anie.201811318.Suche in Google Scholar PubMed PubMed Central
2. Jones, C. G., Martynowycz, M. W., Hattne, J., Fulton, T. J., Stoltz, B. M., Rodriguez, J. A., Nelson, H. M., Gonen, T. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018, 4, 1587–1592; https://doi.org/10.1021/acscentsci.8b00760.Suche in Google Scholar PubMed PubMed Central
3. Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S., Abrahams, J. P. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 2019, 5, 1315–1329; https://doi.org/10.1021/acscentsci.9b00394.Suche in Google Scholar PubMed PubMed Central
4. Nederlof, I., van Genderen, E., Li, Y. W., Abrahams, J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. 2013, D69, 1223–1230; https://doi.org/10.1107/s0907444913009700.Suche in Google Scholar PubMed PubMed Central
5. Nannenga, B. L., Shi, D., Leslie, A. G. W., Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 2014, 11, 927–930; https://doi.org/10.1038/nmeth.3043.Suche in Google Scholar PubMed PubMed Central
6. Polniaszek, R. P., Belmont, S. E., Alvarez, R. Stereoselective nucleophilic additions to the carbon-nitrogen double bond. 3. Chiral acyliminium ions. J. Org. Chem. 1990, 55, 215–223; https://doi.org/10.1021/jo00288a036.Suche in Google Scholar
7. Saito, S., Itoh, M., Fujisawa, T., Saito, H., Kiyotsuka, Y., Watanabe, H., Matsunaga, H., Kagoshima, Y., Suzuki, T., Ogawara, Y., Kitabayashi, K. Isoxazole derivative as mutated isocitrate dehydrogenase 1 Inhibitor. EP3202766, 2017.Suche in Google Scholar
8. Micozzi, A., Ottaviani, M., Giardina, G., Ricci, A., Pizzoferrato, R., Ziller, T., Compagnone, D., Lo Sterzo, C. Use of the Pd-promoted extended one-pot (EOP) synthetic protocol for the modular construction of poly-(arylene ethynylene) co-polymers [–Ar–C≡C–Ar′–C≡C–]n, opto- and electro-responsive materials for advanced technology. Adv. Synth. Catal. 2005, 347, 143–160; https://doi.org/10.1002/adsc.200404233.Suche in Google Scholar
9. Reimer, L., Kohl, H. Transmission Electron Microscopy; Springer: New York, 2008.Suche in Google Scholar
10. Palatinus, L., Brazda, P., Jelinek, M., Hrda, J., Steciuk, G., Klementova, M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. 2019, B75, 512–522; https://doi.org/10.1107/s2052520619007534.Suche in Google Scholar PubMed
11. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
12. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2 : a complete structure solution, refinement. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar
13. Doyle, P. A., Turner, P. S. Relativistic Hartree-Foek X-ray and electron scattering factors. Acta Crystallogr. 1968, A24, 390–397; https://doi.org/10.1107/s0567739468000756.Suche in Google Scholar
14. Peng, L.-M., Ren, G., Dudarev, S. L., Whelan, M. J. Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallogr. 1996, A52, 257–276; https://doi.org/10.1107/s0108767395014371.Suche in Google Scholar
15. Prince, E., Ed. International Tables for Crystallography. Vol. C, Mathematical, Physical and Chemical Tables; Kluwer Academic Publishers, 2004. Table 4.3.2.2.Suche in Google Scholar
16. Prince, E., Ed. International Tables for Crystallography. Vol. C, Mathematical, Physical and Chemical Tables; Kluwer Academic Publishers, 2004. Table 4.3.1.1.Suche in Google Scholar
17. Samperisi, L., Zou, X., Huang, Z. How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal-organic frameworks. IUCrJ 2022, 9, 480–491; https://doi.org/10.1107/s2052252522005632.Suche in Google Scholar
18. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Suche in Google Scholar PubMed PubMed Central
19. Wang, C., Liu, Y., Ji, Z., Wang, E., Li, R., Jiang, H., Tang, Q., Li, H., Hu, W. Naphthyl substituted anthracene combining charge transport with light emission. Chem. Mater. 2009, 21, 2840–2845; https://doi.org/10.1021/cm900511g.Suche in Google Scholar
20. Wang, C., Liu, Y., Wei, Z., Li, H., Xu, W., Hu, W. Biphase micro/nanometer sized single crystals of organic semiconductors: control synthesis and their strong phase dependent optoelectronic properties Appl. Phys. Lett. 2010, 96, 143302; https://doi.org/10.1063/1.3383222.Suche in Google Scholar
21. Curtis, M. D., Cao, J., Kampf, J. W. Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J. Am. Chem. Soc. 2004, 126, 4318–4328; https://doi.org/10.1021/ja0397916.Suche in Google Scholar PubMed
22. Milita, S., Liscio, F., Cowen, L., Cavallini, M., Drain, B. A., Degousée, T., Luong, S., Fenwick, O., Guagliardi, A., Schroeder, B. C., Masciocchi, N. Polymorphism in N,N′-dialkyl-naphthalene diimides. J. Mater. Chem. C 2020, 8, 3097–3112; https://doi.org/10.1039/c9tc06967d.Suche in Google Scholar
23. Gorelik, T. E., Habermehl, S., Shubin, A. A., Gruene, T., Yoshida, K., Oleynikov, P., Kaiser, U., Schmidt, M. U. Crystal structure of copper perchlorophthalocyanine analysed by 3D electron diffraction. Acta Crystallogr. 2021, B77, 662–675; https://doi.org/10.1107/s2052520621006806.Suche in Google Scholar
24. Randle, V. Introduction To Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd ed.; CRC Press: Boca Raton, 2009.Suche in Google Scholar
25. Kolb, U., Gorelik, T., Mugnaioli, E. Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. In Materials Research Society Symposia Proceedings 1184 Warrendale PA, USA, GG01-05, 2009.10.1557/PROC-1184-GG01-05Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0009).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crown ether complexes as a possible template for hybrid organic–inorganic borates
- Artefacts from Ban Chiang, Thailand: Pre-metal Age cord-marked pottery
- The versatility of 1,4,8,11-tetraazacyclotetradecane (cyclam) in the formation of compounds of Co2+, Ni2+, Cu2+, and Zn2+ with metal ions in and out of the cyclic ligand ring
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure of 9,10-bis-((perchloro-phenyl)-ethynyl)anthracene determined from three-dimensional electron diffraction data
- Structure determination through powder X-ray diffraction, Hirshfeld surface analysis, and DFT studies of 2- and 4-(methylthio)benzoic acid
- Crystallographic Computing (Original Paper)
- Jana2020 – a new version of the crystallographic computing system Jana
- Structural basis for fluorine substitution on a new naphthalene–chalcone analog
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crown ether complexes as a possible template for hybrid organic–inorganic borates
- Artefacts from Ban Chiang, Thailand: Pre-metal Age cord-marked pottery
- The versatility of 1,4,8,11-tetraazacyclotetradecane (cyclam) in the formation of compounds of Co2+, Ni2+, Cu2+, and Zn2+ with metal ions in and out of the cyclic ligand ring
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure of 9,10-bis-((perchloro-phenyl)-ethynyl)anthracene determined from three-dimensional electron diffraction data
- Structure determination through powder X-ray diffraction, Hirshfeld surface analysis, and DFT studies of 2- and 4-(methylthio)benzoic acid
- Crystallographic Computing (Original Paper)
- Jana2020 – a new version of the crystallographic computing system Jana
- Structural basis for fluorine substitution on a new naphthalene–chalcone analog