Abstract
In intermetallic chemistry, the Gd14Ag51 structure type is rather common and has many amalgam representatives. Up to today, binary amalgams of this type have been described for M = Na, Ca, Sr, Eu, Yb, and the structure family still is growing. Yb11Hg54 is the only representative with a fully ordered crystal structure, and all other representatives exhibit individual disorder phenomena or patterns. The diversity of disorder phenomena in this structural family is unique. In order to shed a light on the underlying reasons for this unexpected structural complexity, we compare the available literature structure models with three new ternary variants, Yb10.7Sr0.3Hg54, Ca4.5Eu6.5Hg54 and Ca6.9Na4.1Hg54 (all in space group type
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III, beamline P02.1 within the rapid access program 2021A under proposal ID RAt-20010291. Financial support by the Deutsche Forschungsgemeinschaft within the project with No. 659982 is also gratefully acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Simons, J. H., Seward, R. P. J. Chem. Phys. 1938, 6, 790–794; https://doi.org/10.1063/1.1750172.Suche in Google Scholar
2. Tambornino, F., Hoch, C. Z. Kristallogr. 2017, 232, 557–565; https://doi.org/10.1515/zkri-2016-2036.Suche in Google Scholar
3. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, Ohio, USA, 2016.Suche in Google Scholar
4. McMasters, O. D., Gschneider, K. A., Venteicher, R. F. Acta Crystallogr. 1970, B26, 1224–1229; https://doi.org/10.1107/s0567740870003928.Suche in Google Scholar
5. Steeb, S., Godel, D., Löhr, C. J. Less-Common Met. 1968, 15, 137–141; https://doi.org/10.1016/0022-5088(68)90047-7.Suche in Google Scholar
6. Donolato, C., Steeb, S. J. Less-Common Met. 1969, 18, 312–313; https://doi.org/10.1016/0022-5088(69)90170-2.Suche in Google Scholar
7. Runnalls, O. J. C. Can. J. Chem. 1956, 34, 133–145; https://doi.org/10.1139/v56-017.Suche in Google Scholar
8. McMasters, O. D., Gschneidner, K. A., Bruzzone, G., Palenzona, A. J. Less-Common Met. 1971, 25, 135–160; https://doi.org/10.1016/0022-5088(71)90125-1.Suche in Google Scholar
9. Kutaitsev, V. I., Chebotarev, N. T., Andrianov, M. A., Konev, V. N., Lebedev, I. G., Bagrova, V. I., Beznosikova, A. V., Kruglov, A. A., Petrov, P. N., Smotritskaya, E. S. Sov. At. Energ. 1967, 23, 1279–1287; https://doi.org/10.1007/bf01162033.Suche in Google Scholar
10. Palenzona, A., Cirafici, S. J. Less-Common Met. 1986, 124, 245–249; https://doi.org/10.1016/0022-5088(86)90497-2.Suche in Google Scholar
11. Dommann, A., Hulliger, F. J. Less-Common Met. 1988, 141, 261–273; https://doi.org/10.1016/0022-5088(88)90412-2.Suche in Google Scholar
12. Bruzzone, G. Gazz. Chim. Ital. 1972, 102, 234–242.10.2307/3957633Suche in Google Scholar
13. Palenzona, A. J. Less-Common Met. 1971, 25, 367–372; https://doi.org/10.1016/0022-5088(71)90179-2.Suche in Google Scholar
14. Bruzzone, G., Merlo, F. J. Less-Common Met. 1973, 32, 237–241; https://doi.org/10.1016/0022-5088(73)90091-x.Suche in Google Scholar
15. Gabathuler, J. P., White, P., Parthé, E. Acta Crystallogr. 1975, B31, 608–610; https://doi.org/10.1107/s0567740875003378.Suche in Google Scholar
16. Berlin, B. J. Less-Common Met. 1972, 29, 337–348; https://doi.org/10.1016/0022-5088(72)90198-1.Suche in Google Scholar
17. Belyavina, N. N., Markiv, V. Y., Nakonechna, O. I. Ukr. Khim. Zh. 2009, 75, 67–72.Suche in Google Scholar
18. Tkachuk, A. V., Mar, A. Inorg. Chem. 2008, 47, 1313–1318; https://doi.org/10.1021/ic7015148.Suche in Google Scholar PubMed
19. Tambornino, F., Hoch, C. Z. Anorg. Allg. Chem. 2015, 641, 537–542; https://doi.org/10.1002/zaac.201400561.Suche in Google Scholar
20. Hoch, C., Simon, A. Angew. Chem. Int. Ed. 2012, 51, 3262–3265; https://doi.org/10.1002/anie.201108064.Suche in Google Scholar PubMed
21. Liang, J., Liao, C., Tang, Y., Yin, C., Han, Y., Nong, L. Q., Xie, S. J. Alloys Compd. 2010, 502, 68–73; https://doi.org/10.1016/j.jallcom.2010.04.148.Suche in Google Scholar
22. Gumeniuk, R. V., Taras, I. B., Kuz’ma, Y. B. J. Alloys Compd. 2006, 416, 131–134; https://doi.org/10.1016/j.jallcom.2005.08.038.Suche in Google Scholar
23. Gumeniuk, R. V., Stelmakhovych, B. M., Kuz’ma, Y. B. J. Alloys Compd. 2003, 352, 128–133; https://doi.org/10.1016/s0925-8388(02)01160-x.Suche in Google Scholar
24. Liang, J. L., Du, Y., Tang, Y. Y., Liao, C. Z., Meng, J. L., Xu, H. H. J. Alloys Compd. 2009, 481, 264–269; https://doi.org/10.1016/j.jallcom.2009.03.175.Suche in Google Scholar
25. de Negri, S., Solokha, P. G., Pavlyuk, V. V., Saccone, A. Intermetallics 2011, 19, 671–681; https://doi.org/10.1016/j.intermet.2011.01.007.Suche in Google Scholar
26. Liang, J., Liao, C., Du, Y., Tang, Y., Han, Y., He, Y., Liu, S. J. Alloys Compd. 2010, 493, 122–127; https://doi.org/10.1016/j.jallcom.2009.12.087.Suche in Google Scholar
27. Mazzone, D., Riani, P., Zanicchi, G., Marazza, R., Ferro, R. Intermetallics 2002, 10, 801–809; https://doi.org/10.1016/s0966-9795(02)00056-0.Suche in Google Scholar
28. Lin, Q., Corbett, J. D. Inorg. Chem. 2011, 50, 1808–1815; https://doi.org/10.1021/ic102243c.Suche in Google Scholar PubMed
29. Kontani, M., Nishioka, T., Hamaguchi, Y., Matsui, H., Aruga Katori, H., Goto, T. J. Phys. Soc. Jpn. 1994, 63, 3421–3430; https://doi.org/10.1143/jpsj.63.3421.Suche in Google Scholar
30. Verbovytsky, Y. V. Chem. Met. Alloys 2014, 7, 42–55; https://doi.org/10.30970/cma7.0268.Suche in Google Scholar
31. Mazzone, D., Marazza, R., Riani, P., Zanicchi, G., Cacciamani, G., Fornasini, M. L., Manfrinetti, P. Calphad 2009, 33, 31–43; https://doi.org/10.1016/j.calphad.2008.09.017.Suche in Google Scholar
32. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., Kuz’menko, P. P. Dopov. Akad. Nauk. Ukr. RSR 1985, A7, 76–81.Suche in Google Scholar
33. Gumenyuk, R. V., Kuz’ma, Y. B. Inorg. Mater. 2007, 43, 135–137; https://doi.org/10.1134/s0020168507020070.Suche in Google Scholar
34. Shevchenko, I. P., Markiv, V. Y., Yarmolyuk, Y. P., Grin, Y., Fedorchuk, A. O. Russ. Metall. 1989, 1, 219–222.Suche in Google Scholar
35. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N. Russ. Metall. 1989, 2, 201–206.Suche in Google Scholar
36. Markiv, V. Y., Belyavina, N. N., Gavrilenko, I. S. Russ. Metall. 1984, 5, 227–230.Suche in Google Scholar
37. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., Kuz’menko, P. P. Dopov. Akad. Nauk. Ukr. RSR 1986, A11, 78–81.Suche in Google Scholar
38. Myronenko, P., Myakush, O. R., Babizhetskii, V. S., Kotur, B. Y. Visn. Lviv. Derzh. Univ., Ser. Chim. 2011, 52, 22–26.Suche in Google Scholar
39. X-Shape (version 2.07); Stoe & Cie.: Darmstadt (Germany), 2005.Suche in Google Scholar
40. X-Red (version 1.31); Stoe & Cie.:Darmstadt (Germany), 2005.Suche in Google Scholar
41. Apex-3; Bruker ACS Inc.: Madison (USA), 2021.Suche in Google Scholar
42. Prescher, C., Prakapenka, V. B. High Pess. Res. 2015, 35, 223–230; https://doi.org/10.1080/08957959.2015.1059835.Suche in Google Scholar
43. Toby, B. H., van Dreele, R. B. J. Appl. Crystallogr. 2013, 46, 544–549; https://doi.org/10.1107/s0021889813003531.Suche in Google Scholar
44. Krivovichev, S. Acta Crystallogr. 2012, A68, 393–398; https://doi.org/10.1107/s0108767312012044.Suche in Google Scholar
45. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed
46. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183; https://doi.org/10.1107/s0108767384000416.Suche in Google Scholar
47. Momma, K., Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Suche in Google Scholar
48. Haynes, W. M., Ed. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, Florida, USA, 2015.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Incorporation of Pb in (Al,Ge)-mullites in the presence of Fe, Cr, Nd, and Sm
- Synthesis, structural and spectroscopic investigations of dolomite-type MSn(BO3)2 with M = Mn, Fe, Co and Ni
- Synthesis and crystal structure of two novel polymorphs of (NaCl)[Cu(HSeO3)2]: a further contribution to the family of layered copper hydrogen selenites
- Ternary amalgams: expanding the structural variety of the Gd14Ag51 family
- Ternary orthorhombic Laves phases Sr2Pd3Sn, Eu2Pd3Sn and Eu2Pd3In
- Twinned single crystal structure of Li4P2S6
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structures of two phases of Pigment Yellow 110 from X-ray powder diffraction data
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Incorporation of Pb in (Al,Ge)-mullites in the presence of Fe, Cr, Nd, and Sm
- Synthesis, structural and spectroscopic investigations of dolomite-type MSn(BO3)2 with M = Mn, Fe, Co and Ni
- Synthesis and crystal structure of two novel polymorphs of (NaCl)[Cu(HSeO3)2]: a further contribution to the family of layered copper hydrogen selenites
- Ternary amalgams: expanding the structural variety of the Gd14Ag51 family
- Ternary orthorhombic Laves phases Sr2Pd3Sn, Eu2Pd3Sn and Eu2Pd3In
- Twinned single crystal structure of Li4P2S6
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structures of two phases of Pigment Yellow 110 from X-ray powder diffraction data