Home NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view
Article
Licensed
Unlicensed Requires Authentication

NiAs-derived cyanamide (carbodiimide) structures – a group-theoretical view

  • Rainer Pöttgen EMAIL logo , Alex J. Corkett and Richard Dronskowski EMAIL logo
Published/Copyright: January 26, 2023

Abstract

The cyanamide and carbodiimide anions are complex nitrogen-derived one-dimensional species of the type NCN2− (hence, resembling O2− but more covalently bonding) that form a huge number of salt-like phases with a variety of metal cations stemming from the whole Periodic Table. Depending on the coloring (binary, ternary and quaternary salts are known), the cationic size and charge as well as covalent contributions, different distortion (tilting in particular) and/or vacancy ordering variants of cyanamides/carbodiimides occur. Herein we summarize those cyanamide/carbodiimide structures that derive from the aristotype NiAs. The crystal chemistry is discussed on the basis of group-subgroup schemes (Bärnighausen trees).


Corresponding authors: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Richard Dronskowski, Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; and Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, China, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 441856704

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Alex Corkett is indebted to the Deutsche Forschungsgemeinschaft (DFG) for funding (project number 441856704).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, X., Müller, P., Kroll, P., Dronskowski, R. Inorg. Chem. 2002, 41, 4259–4265; https://doi.org/10.1021/ic020133g.Search in Google Scholar PubMed

2. Frank, A., Caro, N. Deutsches Reichspatent 1895, 88363.Search in Google Scholar

3. Berger, U., Schnick, W. J. Alloys Compd. 1994, 206, 179–184; https://doi.org/10.1016/0925-8388(94)90032-9.Search in Google Scholar

4. Liu, X., Krott, M., Müller, P., Hu, C., Lueken, H., Dronskowski, R. Inorg. Chem. 2005, 44, 3001–3003; https://doi.org/10.1021/ic050050a.Search in Google Scholar PubMed

5. Qiao, X., Mroz, D., Corkett, A. J., Bisswanger, T., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 496–499; https://doi.org/10.1002/zaac.202000472.Search in Google Scholar

6. Krott, M., Liu, X., Fokwa, B. P. T., Speldrich, M., Lueken, H., Dronskowski, R. Inorg. Chem. 2007, 46, 2204–2207; https://doi.org/10.1021/ic062051o.Search in Google Scholar PubMed

7. Liu, X., Stork, L., Speldrich, M., Lueken, H., Dronskowski, R. Chem. Eur J. 2009, 15, 1558–1561; https://doi.org/10.1002/chem.200802422.Search in Google Scholar PubMed

8. Schädler, H. D., Jäger, L., Senf, I. Z. Anorg. Allg. Chem. 1993, 619, 1115–1120; https://doi.org/10.1002/zaac.19936190625.Search in Google Scholar

9. Chen, K., Dronskowski, R. J. Phys. Chem. A 2019, 123, 9328–9335; https://doi.org/10.1021/acs.jpca.9b05799.Search in Google Scholar PubMed

10. Sougrati, M. T., Arayamparambil, J. J., Liu, X., Mann, M., Slabon, A., Stievano, L., Dronskowski, R. Dalton Trans. 2018, 47, 10827–10832; https://doi.org/10.1039/c8dt01846d.Search in Google Scholar PubMed

11. Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M., Rojo, T. J. Mater. Chem. 2016, 4, 1608–1611; https://doi.org/10.1039/c5ta08945j.Search in Google Scholar

12. Sougrati, M. T., Darwiche, A., Liu, X., Mahmoud, A., Hermann, R. P., Jouen, S., Monconduit, L., Dronskowski, R., Stievano, L. Angew. Chem. Int. Ed. Engl. 2016, 55, 5090–5095; https://doi.org/10.1002/anie.201600098.Search in Google Scholar PubMed

13. Zhao, W., Liu, Y., Liu, J., Chen, P., Chen, I. W., Huang, F., Lin, J. J. Mater. Chem. A 2013, 1, 7942–7948; https://doi.org/10.1039/c3ta10868f.Search in Google Scholar

14. Ressnig, D., Shalom, M., Patscheider, J., Moré, R., Evangelisti, F., Antonietti, M., Patzke, G. R. J. Mater. Chem. A 2015, 3, 5072–5082; https://doi.org/10.1039/c5ta00369e.Search in Google Scholar

15. Krott, M., Houben, A., Müller, P., Schweika, W., Dronskowski, R. Phys. Rev. B 2009, 80, 024117; https://doi.org/10.1103/physrevb.80.024117.Search in Google Scholar

16. Tang, X., Xiang, H., Liu, X., Speldrich, M., Dronskowski, R. Angew. Chem. Int. Ed. 2010, 49, 4738–4742; https://doi.org/10.1002/anie.201000387.Search in Google Scholar PubMed

17. Sterri, K. B., Besson, C., Houben, A., Jacobs, P., Hoelzel, M., Dronskowski, R. New J. Chem. 2016, 40, 10512–10519; https://doi.org/10.1039/c6nj02498j.Search in Google Scholar

18. Glaser, J., Bettentrup, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2010, 49, 2954–2959; https://doi.org/10.1021/ic902498p.Search in Google Scholar PubMed

19. Krings, M., Montana, G., Dronskowski, R., Wickleder, C. Chem. Mater. 2011, 23, 1694–1699; https://doi.org/10.1021/cm102262u.Search in Google Scholar

20. Qiao, X., Liu, X., Bayarjargal, L., Corkett, A. J., Wang, W., Ma, Z., Lin, Z., Dronskowski, R. J. Mater. Chem. C 2021, 9, 967–974; https://doi.org/10.1039/d0tc04835f.Search in Google Scholar

21. Dolabdjian, K., Schedel, C., Enseling, D., Jüstel, T., Meyer, H.-J. Z. Anorg. Allg. Chem. 2017, 643, 488–494; https://doi.org/10.1002/zaac.201600353.Search in Google Scholar

22. Meyer, H.-J. Dalton Trans. 2010, 39, 5973–5982; https://doi.org/10.1039/c001031f.Search in Google Scholar PubMed

23. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

24. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

25. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, 2nd ed.; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Search in Google Scholar

26. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012; Symmetry relationships between crystal structures, Oxford University Press, 2013; Relaciones de simetría entre estructuras cristalinas. Editorial Síntesis, Madrid, 2013.Search in Google Scholar

27. Block, T., Seidel, S., Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Search in Google Scholar

28. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

29. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Search in Google Scholar

30. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Search in Google Scholar

31. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128.10.1107/S0108767305040286Search in Google Scholar PubMed

32. Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 2000, 33, 1190–1191; https://doi.org/10.1107/s0021889800007135.Search in Google Scholar

33. Kroumova, E., Perez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 1998, 31, 646; https://doi.org/10.1107/s0021889898005524.Search in Google Scholar

34. Stokes, H. T., Hatch, D. M., Campbell, B. J. Isodistort; Isotropy Software Suite: Utah, USA. https://iso.byu.edu.Search in Google Scholar

35. Campbell, B. J., Stokes, H. T., Tanner, D. E., Hatch, D. M. J. Appl. Crystallogr. 2006, 39, 607–614; https://doi.org/10.1107/s0021889806014075.Search in Google Scholar

36. Dolabdjian, K., Castro, C., Meyer, H.-J. Eur. J. Inorg. Chem. 2018, 1624–1630.10.1002/ejic.201800183Search in Google Scholar

37. Corkett, A. J., Dronskowski, R. Dalton Trans. 2019, 48, 15029–15035; https://doi.org/10.1039/c9dt03062j.Search in Google Scholar PubMed

38. Müller, U. Inorganic Structural Chemistry, 2nd ed.; J. Wiley & Sons: Chichester/NewYork/Brisbane/Toronto/Singapore, 2006.Search in Google Scholar

39. Liu, X., Wankeu, M. A., Lueken, H., Dronskowski, R. Z. Naturforsch. 2005, 60b, 593–596.10.1515/znb-2005-0601Search in Google Scholar

40. Liu, X., Dronskowski, R., Kremer, R. K., Ahrens, M., Lee, C., Whangbo, M. H. J. Phys. Chem. C 2008, 112, 11013–11017; https://doi.org/10.1021/jp8007199.Search in Google Scholar

41. Tchougréeff, A. L., Liu, X., Müller, P., van Beek, W., Ruschewitz, U., Dronskowski, R. J. Phys. Chem. Lett. 2012, 3, 3360–3366; https://doi.org/10.1021/jz301722b.Search in Google Scholar

42. Jacobs, P., Houben, A., Tchougréeff, A. L., Dronskowski, R. J. Chem. Phys. 2013, 139, 224707; https://doi.org/10.1063/1.4840555.Search in Google Scholar PubMed

43. Tchougréeff, A. L., Stoffel, R. P., Houben, A., Jacobs, P., Dronskowski, R., Pregelj, M., Zorko, A., Arčon, D., Zaharko, O. J. Phys.: Condens. Matter 2017, 29, 235701; https://doi.org/10.1088/1361-648x/aa6e73.Search in Google Scholar PubMed

44. Dronskowski, R. Z. Naturforsch. 1995, 50b, 1245–1251.10.1515/znb-1995-0819Search in Google Scholar

45. Reckeweg, O., Schleid, T., DiSalvo, F. J. Z. Naturforsch. 2007, 62b, 658–662.10.1515/znb-2007-0505Search in Google Scholar

46. Neukirch, M., Tragl, S., Meyer, H.-J. Inorg. Chem. 2006, 45, 8188–8193; https://doi.org/10.1021/ic0608952.Search in Google Scholar PubMed

47. Glaser, J., Unverfehrt, L., Bettentrup, H., Heymann, G., Huppertz, H., Jüstel, T., Meyer, H.-J. Inorg. Chem. 2008, 47, 10455–10460; https://doi.org/10.1021/ic800985k.Search in Google Scholar PubMed

48. Qiao, X., Chen, K., Corkett, A. J., Mroz, D., Huang, X., Wang, R., Nelson, R., Dronskowski, R. Inorg. Chem. 2021, 60, 12664–12670; https://doi.org/10.1021/acs.inorgchem.1c02177.Search in Google Scholar PubMed

49. Unverfehrt, L., Ströbele, M., Meyer, H.-J. Z. Anorg. Allg. Chem. 2013, 639, 22–24; https://doi.org/10.1002/zaac.201200385.Search in Google Scholar

50. Kubus, M., Heinicke, R., Ströbele, M., Enseling, D., Jüstel, T., Meyer, H.-J. Mater. Res. Bull. 2015, 62, 37–41; https://doi.org/10.1016/j.materresbull.2014.10.073.Search in Google Scholar

51. Corkett, A. J., Chen, K., Dronskowski, R. Eur. J. Inorg. Chem. 2020, 2596–2602; https://doi.org/10.1002/ejic.202000244.Search in Google Scholar

52. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar

53. Guseinov, G. D., Ismailov, M. Z., Guseinov, G. G. Mater. Res. Bull. 1967, 2, 765–772; https://doi.org/10.1016/0025-5408(67)90002-5.Search in Google Scholar

54. Dolabdjian, K., Kobald, A., Romao, C. P., Meyer, H.-J. Dalton Trans. 2018, 47, 10249–10255; https://doi.org/10.1039/c8dt02001a.Search in Google Scholar PubMed

55. Corkett, A. J., Chen, Z., Ertural, C., Slabon, A., Dronskowski, R. Inorg. Chem. 2022, 61, 18221–18228; https://doi.org/10.1021/acs.inorgchem.2c03043.Search in Google Scholar PubMed

56. Qiao, X., Corkett, A. J., Stoffel, R. P., Dronskowski, R. Z. Anorg. Allg. Chem. 2021, 647, 2162–2166; https://doi.org/10.1002/zaac.202100132.Search in Google Scholar

57. Ronneteg, S., Lumey, M.-W., Dronskowski, R., Berger, R. J. Alloys Compd. 2005, 403, 71–75; https://doi.org/10.1016/j.jallcom.2005.05.028.Search in Google Scholar

58. Lange, S., Nilges, T., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 1163–1166; https://doi.org/10.1002/zaac.200500414.Search in Google Scholar

Received: 2022-11-04
Accepted: 2023-01-14
Published Online: 2023-01-26
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0062/html?lang=en
Scroll to top button