Startseite Bärnighausen Trees – A group–subgroup reference database
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bärnighausen Trees – A group–subgroup reference database

  • Theresa Block , Stefan Seidel und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 18. April 2022

Abstract

Group–subgroup schemes are a useful tool in crystal chemistry for systemizing crystal structures and they are an indispensable help during X-ray crystallographic studies of complex, twinned and modulated structures. Meanwhile many superstructure variants are summarized within so-called Bärnighausen trees. The present database lists relevant literature with respect to the crystallographic/group-theoretical tools and original work and gives a tabulated overview on the crystallographic fingerprints (aristotype, space group symbol, Pearson code and Wyckoff sequence) of the respective superstructures.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Gudrun Lübbering for intensive help with the time-consuming literature administration and proofreading.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International®: Materials Park, Ohio (USA), 2020. release 2020/21.Suche in Google Scholar

2. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

3. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar

4. Müller, U. Relating crystal structures by group–subgroup relations. In International Tables for Crystallography, Symmetry relations between space groups, 2nd ed.; Wondratschek, H., Müller, U., Eds.; John Wiley & sons, Ltd: Chichester, Vol. A1, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar

5. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Suche in Google Scholar

6. Müller, U. Inorganic Structural Chemistry, 2nd ed.; J. Wiley & Sons: Chichester-NewYork-Brisbane-Toronto-Singapore, 2006.10.1002/9780470057278Suche in Google Scholar

7. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar

8. Müller, U. Symmetry relationships between crystal structures; Oxford University Press, 2013.10.1093/acprof:oso/9780199669950.001.0001Suche in Google Scholar

9. Müller, U. Relaciones de simetría entre estructuras cristalinas. Editorial Síntesis: Madrid, 2013.Suche in Google Scholar

10. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar

11. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar

12. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128; https://doi.org/10.1107/s0108767305040286.Suche in Google Scholar

13. Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 2000, 33, 1190–1191; https://doi.org/10.1107/s0021889800007135.Suche in Google Scholar

14. Kroumova, E., Perez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 1998, 31, 646; https://doi.org/10.1107/s0021889898005524.Suche in Google Scholar

15. Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 150, 19–30; https://doi.org/10.1006/jssc.1999.8541.Suche in Google Scholar

16. Kohlmann, H., Ritter, C. Z. Anorg. Allg. Chem. 2009, 635, 1573–1579; https://doi.org/10.1002/zaac.200900053.Suche in Google Scholar

17. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Suche in Google Scholar

18. Sluiter, M. H. F. Phase Trans. 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Suche in Google Scholar

19. Dshemuchadse, J., Jung, D. Y., Steurer, W. Acta Crystallogr. 2011, B67, 269–292; https://doi.org/10.1107/s0108768111025390.Suche in Google Scholar

20. Stein, S., Kersting, M., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 447–455; https://doi.org/10.1515/znb-2017-0048.Suche in Google Scholar

21. Miller, G. J. Eur. J. Inorg. Chem. 1998, 523–536.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSuche in Google Scholar

22. Miller, G. J. Z. Anorg. Allg. Chem. 2006, 632, 2078; https://doi.org/10.1002/zaac.200670006.Suche in Google Scholar

23. Han, M.-K., Miller, G. J. Inorg. Chem. 2008, 47, 515–528; https://doi.org/10.1021/ic701311b.Suche in Google Scholar

24. Meyer, A. Symmetriebeziehungen zwischen Kristallstrukturen des Formeltyps AX2, ABX4 und AB2X6 sowie deren Ordnungs- und Leerstellenvarianten. Dissertation; Universität Karlsruhe (TH): Germany, 1981. Drei-Eck-Verlag Uli Löchner.Suche in Google Scholar

25. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Suche in Google Scholar

26. Kußmann, D., Pöttgen, R., Rodewald, U. C., Rosenhahn, C., Mosel, B. D., Kotzyba, G., Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Suche in Google Scholar

27. Johrendt, D., Hosono, H., Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446; https://doi.org/10.1524/zkri.2011.1363.Suche in Google Scholar

28. Baur, W. H. Z. Kristallogr. 1994, 209, 143–150.10.1524/zkri.1994.209.2.143Suche in Google Scholar

29. Baur, W. H. Crystallogr. Rev. 2007, 13, 65–113; https://doi.org/10.1080/08893110701433435.Suche in Google Scholar

30. Bock, O., Müller, U. Z. Anorg. Allg. Chem. 2002, 628, 987–992; https://doi.org/10.1002/1521-3749(200206)628:5<987::aid-zaac987>3.0.co;2-p.10.1002/1521-3749(200206)628:5<987::AID-ZAAC987>3.0.CO;2-PSuche in Google Scholar

31. Bock, O., Müller, U. Acta Crystallogr. 2002, B58, 594–606; https://doi.org/10.1107/s0108768102001490.Suche in Google Scholar

32. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Suche in Google Scholar

33. Baur, W. H., Fischer, R. X., Eds. Microporous and Other Framework Materials with Zeolite-Type Structures, 25 New Framework Type Codes and Supplements for Vols. B to G, Subvolume H in Landolt–Börnstein, New Series, Group IV: Physical Chemistry; Springer-Verlag: Berlin, Vol. 14, 2018; 354 pages.10.1007/978-3-662-54252-1Suche in Google Scholar

34. Galadzhun, Y. V., Hoffmann, R.-D., Pöttgen, R., Adam, M. J. Solid State Chem. 1999, 148, 425–432; https://doi.org/10.1006/jssc.1999.8471.Suche in Google Scholar

35. Solokha, P., Čurlik, I., Giovannini, M., Lee-Hone, N. R., Reiffers, M., Ryan, D. H., Saccone, A. J. Solid State Chem. 2011, 184, 2498–2505; https://doi.org/10.1016/j.jssc.2011.07.031.Suche in Google Scholar

36. Strähle, J., Bärnighausen, H. Z. Naturforsch. 1970, 25b, 1186–1187.10.1515/znb-1970-1027Suche in Google Scholar

37. Strähle, J., Bärnighausen, H. Z. Kristallogr. 1971, 134, 471–472.Suche in Google Scholar

38. Hartenbach, I., Henning, H., Schleid, T., Schustereit, T., Strobel, S. Z. Anorg. Allg. Chem. 2013, 639, 347–353; https://doi.org/10.1002/zaac.201200433.Suche in Google Scholar

39. Beck, J. Z. Anorg. Allg. Chem. 1993, 619, 237–242.10.1002/zaac.19936190204Suche in Google Scholar

40. Volkov, S., Bubnova, R., Shorets, O., Ugolkov, V., Filatov, S. Inorg. Chem. Commun. 2020, 122, 108262; https://doi.org/10.1016/j.inoche.2020.108262.Suche in Google Scholar

41. Katzke, H., Oka, Y., Kanke, Y., Kato, K., Yao, T. Z. Kristallogr. 1999, 214, 284–289.10.1524/zkri.1999.214.5.284Suche in Google Scholar

42. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Suche in Google Scholar

43. Seidel, S., Pöttgen, R. Z. Kristallogr. 2016, 231, 315–320; https://doi.org/10.1515/zkri-2016-0004.Suche in Google Scholar

44. Deen, P. P., Braithwaite, D., Kernavanois, N., Paolasini, L., Raymond, S., Barla, A., Lapertot, G., Sánchez, J. P. Phys. Rev. B 2005, 71, 245118 (5 pp.); https://doi.org/10.1103/physrevb.71.245118.Suche in Google Scholar

45. Gupta, S. B., Suresh, K. G., Nigam, A. K., Mudryk, Y., Paudyal, D., Pecharsky, V. K., Gschneidner, K. A.Jr. J. Alloys Compd. 2014, 613, 280–287; https://doi.org/10.1016/j.jallcom.2014.06.027.Suche in Google Scholar

46. Hinrichsen, B., Dinnebier, R. E., Liu, H., Jansen, M. Z. Kristallogr. 2008, 223, 195–203; https://doi.org/10.1524/zkri.2008.0017.Suche in Google Scholar

47. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183.10.1107/S0108767384000416Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0021).


Received: 2022-03-01
Accepted: 2022-03-19
Published Online: 2022-04-18
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0021/html
Button zum nach oben scrollen