Abstract
Group–subgroup schemes are a useful tool in crystal chemistry for systemizing crystal structures and they are an indispensable help during X-ray crystallographic studies of complex, twinned and modulated structures. Meanwhile many superstructure variants are summarized within so-called Bärnighausen trees. The present database lists relevant literature with respect to the crystallographic/group-theoretical tools and original work and gives a tabulated overview on the crystallographic fingerprints (aristotype, space group symbol, Pearson code and Wyckoff sequence) of the respective superstructures.
Acknowledgements
We thank Gudrun Lübbering for intensive help with the time-consuming literature administration and proofreading.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International®: Materials Park, Ohio (USA), 2020. release 2020/21.Suche in Google Scholar
2. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar
3. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar
4. Müller, U. Relating crystal structures by group–subgroup relations. In International Tables for Crystallography, Symmetry relations between space groups, 2nd ed.; Wondratschek, H., Müller, U., Eds.; John Wiley & sons, Ltd: Chichester, Vol. A1, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar
5. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Suche in Google Scholar
6. Müller, U. Inorganic Structural Chemistry, 2nd ed.; J. Wiley & Sons: Chichester-NewYork-Brisbane-Toronto-Singapore, 2006.10.1002/9780470057278Suche in Google Scholar
7. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar
8. Müller, U. Symmetry relationships between crystal structures; Oxford University Press, 2013.10.1093/acprof:oso/9780199669950.001.0001Suche in Google Scholar
9. Müller, U. Relaciones de simetría entre estructuras cristalinas. Editorial Síntesis: Madrid, 2013.Suche in Google Scholar
10. Aroyo, M. I., Perez-Mato, J. M., Orobengoa, D., Tasci, E., de la Flor, G., Kirov, A. Bulg. Chem. Commun. 2011, 43, 183–197.Suche in Google Scholar
11. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. 2006, 221, 15–27; https://doi.org/10.1524/zkri.2006.221.1.15.Suche in Google Scholar
12. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115–128; https://doi.org/10.1107/s0108767305040286.Suche in Google Scholar
13. Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 2000, 33, 1190–1191; https://doi.org/10.1107/s0021889800007135.Suche in Google Scholar
14. Kroumova, E., Perez-Mato, J. M., Aroyo, M. I. J. Appl. Crystallogr. 1998, 31, 646; https://doi.org/10.1107/s0021889898005524.Suche in Google Scholar
15. Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 150, 19–30; https://doi.org/10.1006/jssc.1999.8541.Suche in Google Scholar
16. Kohlmann, H., Ritter, C. Z. Anorg. Allg. Chem. 2009, 635, 1573–1579; https://doi.org/10.1002/zaac.200900053.Suche in Google Scholar
17. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Suche in Google Scholar
18. Sluiter, M. H. F. Phase Trans. 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Suche in Google Scholar
19. Dshemuchadse, J., Jung, D. Y., Steurer, W. Acta Crystallogr. 2011, B67, 269–292; https://doi.org/10.1107/s0108768111025390.Suche in Google Scholar
20. Stein, S., Kersting, M., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 447–455; https://doi.org/10.1515/znb-2017-0048.Suche in Google Scholar
21. Miller, G. J. Eur. J. Inorg. Chem. 1998, 523–536.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSuche in Google Scholar
22. Miller, G. J. Z. Anorg. Allg. Chem. 2006, 632, 2078; https://doi.org/10.1002/zaac.200670006.Suche in Google Scholar
23. Han, M.-K., Miller, G. J. Inorg. Chem. 2008, 47, 515–528; https://doi.org/10.1021/ic701311b.Suche in Google Scholar
24. Meyer, A. Symmetriebeziehungen zwischen Kristallstrukturen des Formeltyps AX2, ABX4 und AB2X6 sowie deren Ordnungs- und Leerstellenvarianten. Dissertation; Universität Karlsruhe (TH): Germany, 1981. Drei-Eck-Verlag Uli Löchner.Suche in Google Scholar
25. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Suche in Google Scholar
26. Kußmann, D., Pöttgen, R., Rodewald, U. C., Rosenhahn, C., Mosel, B. D., Kotzyba, G., Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Suche in Google Scholar
27. Johrendt, D., Hosono, H., Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446; https://doi.org/10.1524/zkri.2011.1363.Suche in Google Scholar
28. Baur, W. H. Z. Kristallogr. 1994, 209, 143–150.10.1524/zkri.1994.209.2.143Suche in Google Scholar
29. Baur, W. H. Crystallogr. Rev. 2007, 13, 65–113; https://doi.org/10.1080/08893110701433435.Suche in Google Scholar
30. Bock, O., Müller, U. Z. Anorg. Allg. Chem. 2002, 628, 987–992; https://doi.org/10.1002/1521-3749(200206)628:5<987::aid-zaac987>3.0.co;2-p.10.1002/1521-3749(200206)628:5<987::AID-ZAAC987>3.0.CO;2-PSuche in Google Scholar
31. Bock, O., Müller, U. Acta Crystallogr. 2002, B58, 594–606; https://doi.org/10.1107/s0108768102001490.Suche in Google Scholar
32. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Suche in Google Scholar
33. Baur, W. H., Fischer, R. X., Eds. Microporous and Other Framework Materials with Zeolite-Type Structures, 25 New Framework Type Codes and Supplements for Vols. B to G, Subvolume H in Landolt–Börnstein, New Series, Group IV: Physical Chemistry; Springer-Verlag: Berlin, Vol. 14, 2018; 354 pages.10.1007/978-3-662-54252-1Suche in Google Scholar
34. Galadzhun, Y. V., Hoffmann, R.-D., Pöttgen, R., Adam, M. J. Solid State Chem. 1999, 148, 425–432; https://doi.org/10.1006/jssc.1999.8471.Suche in Google Scholar
35. Solokha, P., Čurlik, I., Giovannini, M., Lee-Hone, N. R., Reiffers, M., Ryan, D. H., Saccone, A. J. Solid State Chem. 2011, 184, 2498–2505; https://doi.org/10.1016/j.jssc.2011.07.031.Suche in Google Scholar
36. Strähle, J., Bärnighausen, H. Z. Naturforsch. 1970, 25b, 1186–1187.10.1515/znb-1970-1027Suche in Google Scholar
37. Strähle, J., Bärnighausen, H. Z. Kristallogr. 1971, 134, 471–472.Suche in Google Scholar
38. Hartenbach, I., Henning, H., Schleid, T., Schustereit, T., Strobel, S. Z. Anorg. Allg. Chem. 2013, 639, 347–353; https://doi.org/10.1002/zaac.201200433.Suche in Google Scholar
39. Beck, J. Z. Anorg. Allg. Chem. 1993, 619, 237–242.10.1002/zaac.19936190204Suche in Google Scholar
40. Volkov, S., Bubnova, R., Shorets, O., Ugolkov, V., Filatov, S. Inorg. Chem. Commun. 2020, 122, 108262; https://doi.org/10.1016/j.inoche.2020.108262.Suche in Google Scholar
41. Katzke, H., Oka, Y., Kanke, Y., Kato, K., Yao, T. Z. Kristallogr. 1999, 214, 284–289.10.1524/zkri.1999.214.5.284Suche in Google Scholar
42. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Suche in Google Scholar
43. Seidel, S., Pöttgen, R. Z. Kristallogr. 2016, 231, 315–320; https://doi.org/10.1515/zkri-2016-0004.Suche in Google Scholar
44. Deen, P. P., Braithwaite, D., Kernavanois, N., Paolasini, L., Raymond, S., Barla, A., Lapertot, G., Sánchez, J. P. Phys. Rev. B 2005, 71, 245118 (5 pp.); https://doi.org/10.1103/physrevb.71.245118.Suche in Google Scholar
45. Gupta, S. B., Suresh, K. G., Nigam, A. K., Mudryk, Y., Paudyal, D., Pecharsky, V. K., Gschneidner, K. A.Jr. J. Alloys Compd. 2014, 613, 280–287; https://doi.org/10.1016/j.jallcom.2014.06.027.Suche in Google Scholar
46. Hinrichsen, B., Dinnebier, R. E., Liu, H., Jansen, M. Z. Kristallogr. 2008, 223, 195–203; https://doi.org/10.1524/zkri.2008.0017.Suche in Google Scholar
47. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183.10.1107/S0108767384000416Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0021).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Bärnighausen Trees – A group–subgroup reference database
- Inorganic Crystal Structures (Original Paper)
- High-temperature behavior and structural studies on Ca14Al10Zn6O35
- Formation and stability of Rh2Cd5 and its strucural correlation with RhCd and Rh3Cd5−δ (δ ∼ 0.56)
- Peierls distortion of the cobalt chain in the low-temperature structure of CoIn2
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural, Hirshfeld Surface and HOMO-LUMO gap analysis of five co-crystals of 2-amino-5-chloropyridine or 2-amino-bromopyridine with isomeric methylbenzoic acids
- Crystallographic Computing (Original Paper)
- Direct determination of thermal expansion coefficients from the profile fitting of a diffractogram
- Molecular crystals with a sole bearing contact: structural classes and statistical data
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Bärnighausen Trees – A group–subgroup reference database
- Inorganic Crystal Structures (Original Paper)
- High-temperature behavior and structural studies on Ca14Al10Zn6O35
- Formation and stability of Rh2Cd5 and its strucural correlation with RhCd and Rh3Cd5−δ (δ ∼ 0.56)
- Peierls distortion of the cobalt chain in the low-temperature structure of CoIn2
- Organic and Metalorganic Crystal Structures (Original Paper)
- Structural, Hirshfeld Surface and HOMO-LUMO gap analysis of five co-crystals of 2-amino-5-chloropyridine or 2-amino-bromopyridine with isomeric methylbenzoic acids
- Crystallographic Computing (Original Paper)
- Direct determination of thermal expansion coefficients from the profile fitting of a diffractogram
- Molecular crystals with a sole bearing contact: structural classes and statistical data