Home Topological densities of periodic graphs
Article
Licensed
Unlicensed Requires Authentication

Topological densities of periodic graphs

  • Anton Shutov and Andrey Maleev
Published/Copyright: November 25, 2020

Abstract

We propose a new method to calculate topological densities of periodic graphs based on the concept of layer-by-layer growth. Topological density is expressed in terms of metric characteristics: the volume of the fundamental domain and the volume of the growth polytope of the graph. Our method is universal (works for all d-periodic graphs) and is easily automated. As examples, we calculate topological densities of all 20 plane 2-uniform graphs and 14 carbon allotrope modifications.


Corresponding author: Anton Shutov, Vladimir State University, Gorky Street, 87, Vladimir, 600000, Russian Federation, E-mail:

Unfortunately, Andrey Maleev passed away in November, 2020.


  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. O’Keeffe, M. Dense and rare four-connected nets. Z. Kristallogr. 1991, 196, 21; https://doi.org/10.1524/zkri.1991.196.1-4.21.Search in Google Scholar

2. Bader, M., Klee, W. E., Thimm, G. The 3-regular nets with four and six vertices per unit cell. Z. Kristallogr. 1997, 212, 553; https://doi.org/10.1524/zkri.1997.212.8.553.Search in Google Scholar

3. Baerlocher, Ch., McCusker, L. B., Olson, D. H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, 2007.Search in Google Scholar

4. Herrero, C. P., Ramirez, R. Topological characterization of crystalline ice structures from coordination sequences. Phys. Chem. Chem. Phys. 2013, 15, 16676; https://doi.org/10.1039/c3cp52167b.Search in Google Scholar

5. Akporiaye, D. E., Price, G. D. Relative stability of zeolite frameworks from calculated energetics of known and theoretical structures. Zeolites 1989, 9, 321; https://doi.org/10.1016/0144-2449(89)90079-1.Search in Google Scholar

6. Herrero, C. P. Framework dependence of atom ordering in tectosilicates. A lattice gas model. Chem. Phys. Lett. 1993, 215, 587; https://doi.org/10.1016/0009-2614(93)89360-t.Search in Google Scholar

7. Barthomeuf, D. Topology and maximum content of isolated species (Al, Ga, Fe, B, Si, …) in a zeolitic framework. An approach to acid catalysis. J. Phys. Chem. 1993, 97, 10092; https://doi.org/10.1021/j100141a032.Search in Google Scholar

8. Grosse-Kunstleve, R. W., Brunner, G. O., Sloane, N. J. A. Algebraic description of coordination sequences and exact topological densities for zeolites. Acta Crystallogr. 1996, A52, 879; https://doi.org/10.1107/s0108767396007519.Search in Google Scholar

9. Goodman-Strauss, C., Sloane, N. J. A. A coloring book approach to finding coordination sequences. Acta Crystallogr. 2019, A75, 121; https://doi.org/10.1107/s2053273318014481.Search in Google Scholar

10. Shutov, A., Maleev, A. Coordination sequences and layer-by-layer growth of periodic structures. Z. Kristallogr. 2019, 234, 291; https://doi.org/10.1515/zkri-2018-2144.Search in Google Scholar

11. Eon, J.-G. Algebraic determination of generating functions for coordination sequences in crystal structures. Acta Crystallogr. 2002, A58, 47; https://doi.org/10.1107/s0108767301016609.Search in Google Scholar PubMed

12. Eon, J.-G. Topological density of nets: a direct calculation. Acta Crystallogr. 2004, A60, 7; https://doi.org/10.1107/s0108767303022037.Search in Google Scholar PubMed

13. Eon, J.-G. Topological density of lattice nets. Acta Crystallogr. 2012, A69, 119; https://doi.org/10.1107/s0108767312042298.Search in Google Scholar PubMed

14. Rau, V. G., Zhuravlev, V. G., Rau, T. F., Maleev, A. V. Morphogenesis of crystal structures in the discrete modeling of packings. Crystallogr. Rep. 2002, 47, 727; https://doi.org/10.1134/1.1509384.Search in Google Scholar

15. Zhuravlev, V. G. Self-similar growth of periodic partitions and graphs. St Petersburg Math. J. 2002, 13, 201.Search in Google Scholar

16. Maleev, A. V., Shutov, A. V. Layer-By-Layer Growth Model for Tilings, Packings and Graphs. Vladimir, Tranzit_X. 2011; pp. 107.Search in Google Scholar

17. Akiyama, S., Caalim, J., Imai, K., Kaneko, H. Corona limits of tilings: periodic case. Discrete Comput. Geom. 2019, 61, 626; https://doi.org/10.1007/s00454-018-0033-x.Search in Google Scholar

18. Fritz, T. Velocity polytopes of periodic graphs and a no-go theorem for digital physics. Discrete Math. 2013, 313, 1289; https://doi.org/10.1016/j.disc.2013.02.010.Search in Google Scholar

19. Barber, C. B., Dobkin, D. P., Huhdanpaa, H. T. The Quickhull algorithm for convex hulls. ACM Trans. Math Software 1996, 22, 469; https://doi.org/10.1145/235815.235821.Search in Google Scholar

20. Qhull code for Convex Hull, Delaunay Triangulation Voronoi diagram, and halfspace intersection about a point. http://qhull.org.Search in Google Scholar

21. Reticular Chemistry Structure Resource (RCSR). http://rcsr.net.Search in Google Scholar

22. Grunbaum, B., Shephard, G. C. Tilings and Patterns; Freeman: New York, 1987.Search in Google Scholar

23. Shutov, A., Maleev, A. Coordination sequences of 2-uniform graphs. Z. Kristallogr. 2020, 235, 157–166, https://doi.org/10.1515/zkri-2020-0002.Search in Google Scholar

24. Ivanovskii, A. L. Search for superhard carbon: between graphite and diamond. J. Superhard Mater. 2013, 35, 1; https://doi.org/10.3103/s1063457613010012.Search in Google Scholar

25. Hoffmann, R., Kabanov, A. A., Golov, A. A., Proserpio, D. M. Homo citans and carbon allotropes: for an ethics of citation. Angew. Chem. Int. Ed. 2016, 55, 10962; https://doi.org/10.1002/anie.201600655.Search in Google Scholar PubMed PubMed Central

26. Samara Carbon Allotrope Database. http://sacada.sctms.ru.Search in Google Scholar

27. Shutov, A. V., Maleev, A. V. Layer-by-Layer growth of vertex graph of Penrose tiling. Crystallogr. Rep. 2017, 62, 683; https://doi.org/10.1134/s1063774517050194.Search in Google Scholar

28. Shutov, A. V., Maleev, A. V. Layer-by-Layer growth of Ammann–Beenker graph. Crystallogr. Rep. 2020, 64, 851; https://doi.org/10.1134/S1063774519060191.Search in Google Scholar

Received: 2020-07-06
Accepted: 2020-10-12
Published Online: 2020-11-25
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0065/html?lang=en
Scroll to top button