Startseite Crystal structure relations in the binary system Li–Sn including the compound c-Li3Sb
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structure relations in the binary system Li–Sn including the compound c-Li3Sb

  • Patric Berger , Clemens Schmetterer , Herta Silvia Effenberger und Hans Flandorfer EMAIL logo
Veröffentlicht/Copyright: 16. September 2020

Abstract

A topological analysis of the crystal structures of Li, Li–Sn compounds, Li8Sn3−xSbx and metastable c-Li3Sb showed that these structures can be described by a hierarchical scheme of building blocks based on atom blocks and polyhedra blocks, respectively. These blocks are linked in distinct ways to form the individual 3D atom arrangement. A common model was established for the construction of the mentioned structures from bespoke building blocks, for which bcc-Li is the aristotype. This latter structure can be described on the basis of hexa-capped cubes from which variants are derived through substitution of Li by Sn (or Sb). These are then combined into polyhedra blocks that are in turn assembled into polyhedra sequences. These latter are repeated and linked in three dimensions to form the whole crystal structure. At xSn ≥ 0.5, this mechanism changes and structural elements from bcc-Li and β-Sn can be observed in LiSn and Li2Sn5. In this work, we present the similarities and differences between the various crystal structures, the topological model with its construction rules and its limitations.


Corresponding author: Hans Flandorfer, Institute of Inorganic Chemistry – Functional Materials, University of Vienna, Faculty of Chemistry, Althanstraße 14 (UZAII), 1090Vienna, Austria, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Berger, P., Schmetterer, C., Effenberger, H. S., Flandorfer, H. The ternary phase Li8SbxSn3-x with 0.3 ≤ x ≤1.0. Z. Krist-Cryst. Mater. 2020; https://doi.org/10.1515/zkri-2020-0020.Suche in Google Scholar

2. Zalkin, A., Ramsey, W., Templeton, D. Intermetallic compounds between lithium and lead. II. The crystal structure of Li8Pb3. J. Chem. Phys. 1956, 60, 1275; https://doi.org/10.1021/j150543a030.Suche in Google Scholar

3. Cenzual, K., Gelato, L. M., Penzo, M., Parthé, E. Overlooked trigonal symmetry in structures reported with monoclinic centred Bravais lattices; trigonal description of Li8Pb3, PtTe, Pt3Te4, Pt2Te3, LiFe6Ge4, LiFe6Ge5, CaGa6Te10 and La3.266Mn1 1S6. Z. Kristallogr. Cryst. Mater. 1990, 193, 217; https://doi.org/10.1524/zkri.1990.193.3-4.217.Suche in Google Scholar

4. Fürtauer, S., Effenberger, H. S., Flandorfer, H. New intermetallic phases in the Cu-Li-Sn system: the lithium-rich phases Li3CuSn and Li6Cu2Sn. Z. Krist-Cryst. Mater. 2016, 231, 79; https://doi.org/10.1515/zkri-2015-1884.Suche in Google Scholar

5. Frank, U., Müller, W. Darstellung und Struktur der Phase Li13Sn5 und die strukturelle Verwandtschaft der Phasen in den Systemen Li-Sn und Li-Pb. Z. Naturforsch. B 1975, 30, 316; https://doi.org/10.1515/znb-1975-5-605.Suche in Google Scholar

6. Berliner, R., Fajen, O., Smith, H. G., Hitterman, R. L. Neutron powder-diffraction studies of lithium, sodium, and potassium metal. Phys. Rev. B 1989, 40, 12086; https://doi.org/10.1103/physrevb.40.12086.Suche in Google Scholar PubMed

7. Brauer, G., Zintl, E. Konstitution von Phosphiden, Arseniden, Antimoniden und Wismutiden des Lithiums, Natriums und Kaliums. Z. Phys. Chem. 1937, 37, 323; https://doi.org/10.1515/zpch-1937-3725.Suche in Google Scholar

8. Gladyeshevskii, E. I., Oleksiv, G. I., Kripyakevich, P. I. Sov. Phys. Crystallogr. 1964, 9, 269; https://doi.org/10.1070/pu1964v007n02abeh003663.Suche in Google Scholar

9. Lupu, C., Mao, J. G., Rabalais, J. W., Guloy, A. M., Richardson, J. W. X-ray and neutron diffraction studies on “Li4.4Sn”. Inorg. Chem. 2003, 42, 3765; https://doi.org/10.1021/ic026235o.Suche in Google Scholar PubMed

10. Frank, U., Müller, W., Schäfer, H. The crystal structure of Li7Sn2. Z. Naturforsch. B 1975, 30, 6; https://doi.org/10.1515/znb-1975-1-203.Suche in Google Scholar

11. Frank, U., Müller, W., Schäfer, H. The crystal structure of Li5Sn2. Z. Naturforsch. B 1975, 30, 1; https://doi.org/10.1515/znb-1975-1-202.Suche in Google Scholar

12. Müller, W. Preparation and crystal structure of Li7Sn3. Z. Naturforsch. B 1974, 29, 304; https://doi.org/10.1515/znb-1974-5-602.Suche in Google Scholar

13. Müller, W., Schäfer, H. The crystal structure of LiSn. Z. Naturforsch. B 1973, 28, 246; https://doi.org/10.1515/znb-1973-5-604.Suche in Google Scholar

14. Hansen, D. A., Chang, L. J. Crystal structure of Li2Sn5. Acta Crystallogr. 1969, 25B, 2392; https://doi.org/10.1107/s0567740869005760.Suche in Google Scholar

15. Wolcyrz, M., Kubiak, R., Maciejewski, S. X-ray-investigation of thermal-expansion and atomic thermal vibrations of Tin, Indium, and their alloys. Phys. Status Solidi B 1981, 107, 245; https://doi.org/10.1002/pssb.2221070125.Suche in Google Scholar

16. Zalkin, A., Ramsey, W. J. Intermetallic compounds between lithium and lead. IV. The crystal structure of Li22Pb5. J. Phys. Chem. 1958, 62, 689; https://doi.org/10.1021/j150564a013.Suche in Google Scholar

17. Goward, G. R., Taylor, N. J., Souza, D. C. S., Nazar, L. F. The true crystal structure of Li17M4 (M = Ge, Sn, Pb)-revised from Li22M5. J. Alloy Compd. 2001, 329, 82; https://doi.org/10.1016/s0925-8388(01)01567-5.Suche in Google Scholar

18. Thewlis, J., Davey, A. R. Thermal expansion of grey tin. Nature 1954, 174, 1011; https://doi.org/10.1038/1741011a0.Suche in Google Scholar

19. Lippmann, S., Saenko, I., Dreval, L., Watson, A. Materials Science International Team M. Li-Sn binary phase diagram evaluation – phase diagrams, crystallographic and thermodynamic data. Datasheet from MSI Eureka in Springer Materials. https://materials.springer.com/msi/docs/sm_msi_r_20_011366_01.10.7121/msi-eureka-20.11366.1.8Suche in Google Scholar

Received: 2020-04-03
Accepted: 2020-07-30
Published Online: 2020-09-16
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0036/html
Button zum nach oben scrollen