Home Natural tilings and free space in zeolites: models, statistics, correlations, prediction
Article
Licensed
Unlicensed Requires Authentication

Natural tilings and free space in zeolites: models, statistics, correlations, prediction

  • Olga A. Blatova , Andrey A. Golov and Vladislav A. Blatov EMAIL logo
Published/Copyright: December 22, 2018

Abstract

We review two concepts in description of free space in the zeolite-like frameworks: topological (natural tiling) and geometrical-topological (Voronoi net). Advantages and disadvantages as well as similarities and differences of both concepts are discussed. We also consider the packing model of zeolite framework assemblage, which is derived from the natural tiling approach. New statistical data are given for natural tilings and Voronoi models of all known 239 zeolite frameworks. A route to modeling and prediction of new zeolite frameworks is outlined.

Acknowledgements

The authors thank the Russian Foundation for Basic Research for the support of development of the tile packing model (grant 17-43-630619) and the Russian Science Foundation for support of the search for prospective zeolite frameworks and computation of free space parameters within grant 16-13-10158.

References

[1] Zeolite framework database; http://www.iza-structure.org/.Search in Google Scholar

[2] M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, M. D. Foster, Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Micropor. Mesopor. Mater.2004, 74, 121.10.1016/j.micromeso.2004.06.013Search in Google Scholar

[3] R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys.2011, 13, 12407.10.1039/c0cp02255aSearch in Google Scholar PubMed

[4] Y. Li, J. Yu, R. Xu, Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed.2013, 52, 1673.10.1002/anie.201206340Search in Google Scholar PubMed

[5] R. M. Barrer, J. W. Baynham, F. W. Bultitude, W. M. Meier, Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues. J. Chem. Soc.1959, 0, 195.10.1039/jr9590000195Search in Google Scholar

[6] W. M. Meier, Molecular Sieves. Society of Chem. and Industry, London, 1968.Search in Google Scholar

[7] D. W. Breck, Zeolite Molecular Sieves. Wiley, New York, 1974.Search in Google Scholar

[8] J. V. Smith, Microporous and other Framework Materials with Zeolite-Type Structures; Landolt-Börnstein New Series IV/14 Subvolume A: Tetrahedral Frameworks of Zeolites, Clathrates and Related Materials; Springer, Berlin 2000.Search in Google Scholar

[9] H. Van Königsveld, Compendium of Zeolite Framework Types. Elsevier, London, 2007.Search in Google Scholar

[10] R. X. Fischer, W. H. Baur, Microporous and other Framework Materials with Zeolite-Type Structures; Landolt-Börnstein – Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vols. 14B-14H. Springer, Berlin, Heidelberg, 2000, 2002, 2006, 2009, 2013, 2015, 2017.Search in Google Scholar

[11] V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater.2013, 25, 412.10.1021/cm303528uSearch in Google Scholar

[12] V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, D. M. Proserpio, Three-periodic nets and tilings: natural tilings for nets. Acta Cryst.2007, A63, 418.10.1107/S0108767307038287Search in Google Scholar PubMed

[13] M. Anderson, J. Gebbie, A. Hill, N. Farida, M. Attfield, P. Cubillas, V. A. Blatov, D. M. Proserpio, D. Akporiaye, B. Arstad, J. Gale, Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature2017, 544, 456.10.1038/nature21684Search in Google Scholar PubMed

[14] N. A. Anurova, V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, Natural Tilings for Zeolite-Type Frameworks. J. Phys. Chem. C2010, 114, 10160.10.1021/jp1030027Search in Google Scholar

[15] V. A. Blatov, A. P. Shevchenko, Analysis of voids in crystal structures: the methods of ‘dual’ crystal chemistry. Acta Cryst.2003, A59, 34.10.1107/S0108767302020603Search in Google Scholar

[16] O. Delgado Friedrichs, M. O’Keeffe, O. M. Yaghi, Three-periodic nets and tilings: regular and quasiregular nets. Acta Cryst.2003, A59, 22.10.1107/S0108767302018494Search in Google Scholar PubMed

[17] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des.2014, 14, 3576.10.1021/cg500498kSearch in Google Scholar

[18] N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res.2005, 38, 176.10.1021/ar020022lSearch in Google Scholar PubMed

[19] E. D. Kuznetsova, O. A. Blatova, V. A. Blatov, Predicting new zeolites: a combination of thermodynamic and kinetic factors. Chem. Mater.2018, 30, 2829.10.1021/acs.chemmater.8b00905Search in Google Scholar

[20] C. J. Dawson, V. Kapko, M. F. Thorpe, M. D. Foster, M. M. J. Treacy, Flexibility as an indicator of feasibility of zeolite frameworks. J. Phys. Chem. C2012, 116, 16175.10.1021/jp2107473Search in Google Scholar

[21] M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.2008, 41, 1782.10.1021/ar800124uSearch in Google Scholar PubMed

[22] F. Aman, A. M. Asiri, W. A. Siddiqui, M. N. Arshad, A. Ashraf, N. S. Zakharov, V. A. Blatov, Multilevel topological description of molecular packings in 1,2-benzothiazines. CrystEngComm. 2014, 16, 1963.10.1039/C3CE42218FSearch in Google Scholar

[23] E. Koch, W. Fischer, Types of sphere packings for crystallographic point groups, rod groups and layer groups. Z. Kristallogr.1978, 148, 107.10.1524/zkri.1978.148.1-2.107Search in Google Scholar

[24] A. Turrina, R. Garcia, A. E. Watts, H. F. Greer, J. Bradley, W. W. Zhou, P. A. Cox, M. D. Shannon, A. Mayoral, J. L. Casci, P. A. Wright, STA-20: an ABC-6 zeotype structure prepared by co-templating and solved via a hypothetical structure database and STEM-ADF imaging. Chem. Mater.2017, 29, 2180.10.1021/acs.chemmater.6b04892Search in Google Scholar

[25] D. Xie, L. B. McCusker, C. Baerlocher, S. I. Zones, W. Wan, X. Zou, SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the deNOx catalyst Cu-SSZ-13. J. Am. Chem. Soc.2013, 135, 10519.10.1021/ja4043615Search in Google Scholar PubMed

[26] V. A. Blatov, G. D. Ilyushin, A. E. Lapshin, O. Y. Golubeva, Structure and chemical composition of the new zeolite ISC-1 from the data of nanocluster modeling. Glass Phys. Chem.2010, 36, 663.10.1134/S1087659610060040Search in Google Scholar

[27] H. Lee, J. Shin, W. Choi, H. J. Choi, T. Yang, X. Zou, S. B. Hong, PST-29: a missing member of the RHO family of embedded isoreticular zeolites. Chem. Mater.2018, 30, 6619.10.1021/acs.chemmater.8b03311Search in Google Scholar

[28] V. A. Blatov, Voronoi-Dirichlet polyhedra in crystal chemistry: theory and applications. Cryst. Rev.2004, 10, 249.10.1080/08893110412331323170Search in Google Scholar

[29] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microp. Mesop. Mater.2012, 149, 134.10.1016/j.micromeso.2011.08.020Search in Google Scholar

[30] M. V. Peskov, V. A. Blatov, G. D. Ilyushin, U. Schwingenschlögl, Computer-aided modeling of aluminophosphate zeolites as packings of building units. J. Phys. Chem C2012, 116, 6734.10.1021/jp2115252Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2143).


Received: 2018-10-30
Accepted: 2018-12-12
Published Online: 2018-12-22
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2143/html?lang=en
Scroll to top button