Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions
-
Bogdan I. Lazoryak
, Sergey M. Aksenov
Abstract
Single crystals of Ca9Y(VO4)7 (1), Ca9Y(VO4)7:Li+ (2) and Ca9Y(VO4)7:Mg2+ (3) were grown by the Czochralski method. Their chemical composition was analyzed by ICP spectroscopy and their crystal structure was examined by single crystal X-ray analysis. The crystals are characterized by trigonal symmetry, space group R3c. Hexagonal unit-cell parameters are as follows: a=10.8552(1) Å, c=38.0373(2) Å, V=3881.65(1) Å3 for 1; a=10.8570(1) Å, c=38.0161(3) Å, V=3880.77(4) Å3 for 2; a=10.8465(1) Å, c=38.0366(2) Å, V=3875.36(3) Å3 for 3. All crystals are characterized by β-Ca3(PO4)2-type structure with statistical distribution of Ca2+ and Y3+ over M1, M2 and M5 sites in different ratios and with completely empty M4-cationsite. The impurity of Mg2+cations in structure 2 has been detected in octahedral M5 site. Ferroelectric phase transitions are evidenced by DSC and SHG. At about 1220 and 1300 K, they demonstrate phase transitions. Upon heating the symmetry of the crystal structure changes according to the scheme R3c→R3̅c→R3̅m and is restored during consequent cooling. The first of them is of ferroelectric and the second of non-ferroelectric nature. Even a small amount of impurities in Ca9Y(VO4)7 structure is accompanied by a noticeable decrease in the temperature of the ferroelectric-paraelectric phase transition.
Acknowledgements
This research was supported by the Russian Science Foundation (Grant 16-13-10340). D.V.D. is grateful for financial support of the Foundation of the President of the Russian Federation (Grant MК-3502.2018.5).
References
[1] B. I. Lazoryak, L. O. Dmitrienko, S. V. Grechkin, Orthovanadates with the whitlockite structure. Russ. Zh. Neorgan. Khim.1990, 35, 1095.Search in Google Scholar
[2] B. Dickens, L. W. Schroeder, W. E. Brown, Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem.1974, 10, 232.10.1016/0022-4596(74)90030-9Search in Google Scholar
[3] R. Gopal, C. Calvo, Structure of Ca3(VO4)2. Z. Kristallogr.1973, 137, 67.10.1524/zkri.1973.137.16.67Search in Google Scholar
[4] R. Gopal, C. Calvo, J. Ito, W. K. Sabine, Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can. J. Chem.1974, 52, 1155.10.1139/v74-181Search in Google Scholar
[5] L. Han, Y. Wang, J. Zhang, Y. Wang, Enhancement of red emission intensity of Ca9Y(VO4)7:Eu3+ phosphor via Bi co-doping for the application to white LEDs. Mater. Chem. Phys.2013, 139, 87.10.1016/j.matchemphys.2012.12.048Search in Google Scholar
[6] L. Li, X. Liu, H. M. Noh, B. K. Moon, B. C. Choi, J. H. Jeong, Photoluminescence of rare earth ions coactivated Ca9Y(VO4)7 with cold, natural and warm white emission. Mater. Chem. Phys.2015, 158, 18.10.1016/j.matchemphys.2015.03.029Search in Google Scholar
[7] L. Liu, R.-J. Xie, N. Hirosaki, Y. Li, Crystal structure and luminescence properties of novel red-emitting Ca10−1.5x EuxLi(VO4)7 phosphors. J. Spectrosc. Dyn.2013, 3, 10.Search in Google Scholar
[8] L. Liu, R-J. Xie, N. Hirosaki, Y. Li, T. Takeda, C-N. Zhang, J. Li, X. Sun, Crystal structure and photoluminescence properties of red-emitting Ca9La1−x (VO4)7:xEu3+ phosphors for white light-emitting diodes. J. Am. Ceram. Soc.2010, 93, 4081.10.1111/j.1551-2916.2010.03994.xSearch in Google Scholar
[9] L. Li, H. M. Noh, B. K. Moon, J. H. Jeong, B. C. Choi, X. Liu, Tunable white-light emission in single-phase Ca9Gd(VO4)7:Tm3+, Eu3+. Opt. Mater. Express2014, 4, 16.10.1364/OME.4.000016Search in Google Scholar
[10] X. Wu, Y. Huang, L. Shi, H. J. Seo, Spectroscopy characteristics of vanadate Ca9Dy(VO4)7 for application of white-light-emitting diodes. Mater. Chem. Phys.2009, 116, 449.10.1016/j.matchemphys.2009.04.002Search in Google Scholar
[11] X. Chen, N. F. Zhuang, X. L. Hu, F. J. Zhuang, J. Z. Chen, Growth and spectral properties of self-frequency doubling crystal, Nd:Ca9.03Na1.08La0.62(VO4)7. Appl. Phys. B Lasers Opt.2007, 88, 449.10.1007/s00340-007-2736-1Search in Google Scholar
[12] X. Hu, X. Chen, N. Zhuang, R. Wang, J. Chen, Growth, nonlinear frequency-doubling and spectral properties of Nd:Ca8.53K1.09La0.95(VO4)7 crystal. J. Crystal Growth2008, 310, 5423.10.1016/j.jcrysgro.2008.09.059Search in Google Scholar
[13] H. Wu, F. Yuan, S. Sun, Y. Huang, L. Zhang, Z. Lin, G. Wang, Growth and spectral characteristics of a new promising stoichiometric laser crystal: Ca9Yb(VO4)7. J. Rare Earths2015, 33, 239.10.1016/S1002-0721(14)60409-9Search in Google Scholar
[14] Z. Lin, G. Wang, L. Zhang, Growth of a new nonlinear optical crystal YCa9(VO4)7. J. Crystal Growth2007, 304, 233.10.1016/j.jcrysgro.2007.01.039Search in Google Scholar
[15] I. A. Khodasevich, S. V. Voitikov, V. A. Orlovich, M. B. Kosmyna, A. N. Shekhovtsov, Raman spectra of crystalline double calcium orthovanadates Ca10M(VO4)7 (M=Li, K, Na) and their interpretation based on deconvolution into voigt profiles. J. Appl. Spectrosc.2016, 83, 555.10.1007/s10812-016-0327-9Search in Google Scholar
[16] F. Yuan, W. Zhao, Y. Huang, L. Zhang, S. Sun, Z. Lin, G. Wang, Growth and optical properties of a new promising laser material Er3+/Yb3+:Ca9Y(VO4)7. Opt. Commun.2014, 328, 62.10.1016/j.optcom.2014.04.047Search in Google Scholar
[17] S. Sun, Z. Lin, L. Zhang, Y. Huang, G. Wang, Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7. J. Alloys. Comp.2013, 551, 229.10.1016/j.jallcom.2012.09.146Search in Google Scholar
[18] B. I. Lazoryak, S. M. Aksenov, S. Y. Stefanovich, N. G. Dorbakov, D. A. Belov, O. V. Baryshnikova, V. A. Morozov, M. S. Manylov, Z. Lin, Ferroelectric crystal Ca9Yb(VO4)7 in the series of Ca9R(VO4)7 non-linear optical materials (R=REE, Bi, Y). J. Mater. Chem. C.2017, 5, 2301.10.1039/C7TC00124JSearch in Google Scholar
[19] M. V. Dobrotvorskaya, Y. N. Gorobets, M. B. Kosmyna, P. V. Mateichenko, B. P. Nazarenko, V. M. Puzikov, N. A. Shekhovtsov, Growth and characterization of Ca9Ln(VO4)7 crystals (Ln=Y, La, or Gd). Crystallogr. Rep.2012, 57, 959.10.1134/S1063774512070061Search in Google Scholar
[20] S. Sun, L. Zhang, Y. Huang, Z. Lin, G. Wang, Flux-Czochralski growth of Ca9Y(VO4)7 crystal. J. Crystal Growth2014, 392, 98.10.1016/j.jcrysgro.2014.01.057Search in Google Scholar
[21] M. P. Demesh, A. S. Yasukevich, N. V. Kuleshov, M. B. Kosmyna, P. V. Mateychenko, B. P. Nazarenko, A. N. Shekhovtsov, A. A. Kornienko, E. B. Dunina, V. A. Orlovich, I. A. Khodasevich, W. Paszkowicz, A. Behrooz, Growth and spectroscopic properties of Ca9Nd(VO4)7 single crystal. Opt. Mater.2016, 60, 387.10.1016/j.optmat.2016.08.014Search in Google Scholar
[22] V. A. Morozov, A. A. Belik, R. N. Kotov, I. A. Presnyakov, S. S. Khasanov, B. I. Lazoryak, Crystal structures of double calcium and alkali metal phosphates Ca10M(PO4)7 (M=Li, Na, K). Crystallogr. Rep. 2000, 45, 13.10.1134/1.171129Search in Google Scholar
[23] S. Yu. Oralkov, B. I. Lazoryak, R. G. Aziev, Structure and properties of Ca10+0.5x M1-x (PO4)7 solid solution. M=Li, Na, K, 0<x <1. J. Inorg. Chem.1988, 33, 73.Search in Google Scholar
[24] F. P. Du, R. Zhu, Y. L. Huang, Y. Tao, H. J. Seo, Luminescence and microstructures of Eu3+ doped Ca9LiGd2/3(PO4)7. Dalton Trans.2011, 40, 11433.10.1039/c1dt11075fSearch in Google Scholar PubMed
[25] J. Zhang, C. Jiang, Near-infrared quantum cutting of Dy3+, Ho3+-Yb3+ and Er3+-Yb3+-dopped Ca10K(PO4)7 phosphors. Funct. Matter. Lett.2014, 7, 1450047.10.1142/S1793604714500477Search in Google Scholar
[26] P. A. Loiko, A. S. Yasukevich, A. E. Gulevich, M. P. Demesh, M. B. Kosmyna, B. P. Nazarenko, V. M. Puzikov, A. N. Shekhovtsov, A. A. Kornienko, E. B. Dunina, N. V. Kuleshov, K. V. Yumashev, Growth, spectroscopic and thermal properties of Nd doped disordered Ca9(La/Y)(VO4)7 and Ca10(Li/K)(VO4)7 crystals. J. Lumin.2013, 137, 252.10.1016/j.jlumin.2013.01.013Search in Google Scholar
[27] O. Schrandt, H. K. Müller-Buschbaum, K+ at and eficient Ca2+ point positionin Ca3(VO4)2: on KCa10V7O28. Z. Naturforsch.1996, B51, 473.10.1515/znb-1996-0405Search in Google Scholar
[28] M. B. Kosmyna, B. P. Nazarenko, V. M. Puzikov, A. N. Shekhovtsov, W. Paszkowicz, A. Behrooz, P. Romanowski, A. S. Yasukevich, N. V. Kuleshov, M. P. Demesh, W. Wierzchowski, K. Wieteska, C. Paulmann, Ca10Li(VO4)7:Nd3+, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal. J. Crystal Growth2016, 445, 101.10.1016/j.jcrysgro.2016.04.002Search in Google Scholar
[29] W. Paszkowicz, A. Shekhovtsov, M. Kosmyna, P. Loiko, E. Vilejshikova, R. Minikayev, P. Romanowski, W. Wierzchowski, K. Wieteska, C. Paulmann, E. Bryleva, K. Belikov, A. Fitch, Structure and thermal expansion of Ca9Gd(VO4)7: a combined powder-diffraction and dilatometric study of a Czochralski-grown crystal. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms2017, 411, 100.10.1016/j.nimb.2017.07.026Search in Google Scholar
[30] B. I. Lazoryak, A. A. Belik, S. Y. Stefanovich, V. A. Morozov, A. P. Malakho, O. V. Baryshnikova, I. A. Leonidov, O. I. Leonidova, Ferroelectric–ionic conductor phase transitions in optical nonlinear Ca9R(VO4)7 vanadates. Dokl. Phys. Chem.2002, 384, 144.10.1023/A:1016063602815Search in Google Scholar
[31] N. G. Dorbakov, O. V. Baryshnikova, V. A. Morozov, A. A. Belik, Y. Katsuya, M. Tanaka, S. Y. Stefanovich, B. I. Lazoryak, Tuning of nonlinear optical and ferroelectric properties via the cationic composition of Ca9.5−1.5x BixCd(VO4)7 solid solutions. Mater. Des.2017, 116, 515.10.1016/j.matdes.2016.11.107Search in Google Scholar
[32] L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr.1999, 32, 837.10.1107/S0021889899006020Search in Google Scholar
[33] V. Petricek, M. Dusek, L. Palatinus, Jana2006. Structure determination software programs, Institute of Physics, Praha, 2006.Search in Google Scholar
[34] A. A. Belik, V. A. Morozov, R. N. Kotov, S. S. Khasanov, B. I. Lazoryak, Crystal structure of double vanadates Ca9R(VO4)7. II. R=Tb, Dy, Ho, and Y. Crystallogr. Rep.2000, 45, 389.10.1134/1.171204Search in Google Scholar
[35] A. J. Wilson, International Tables for Crystallography, Kluver, Dordrecht, The Netherlands, 1992.Search in Google Scholar
[36] K. Brandenburg, Program DIAMOND, Version 2.1c, Crystal Impact GbR, Bonn, Germany, 1999.Search in Google Scholar
[37] B. I. Lazoryak, T. V. Strunenkova, V. N. Golubev, E. A. Vovk, L. N. Ivanov, Triple phosphates of calcium, sodium and trivalent elements with whitlockite-like structure. Mater. Res. Bull.1996, 31, 207.10.1016/0025-5408(95)00181-6Search in Google Scholar
[38] V. A. Morozov, I. A. Presnyakov, A. A. Belik, S. S. Khasanov, B. I. Lazoryak, Crystal structures of calcium magnesium alkali metal phosphates Ca9MgM(PO4)7 (M=Li, Na, K). Crystallogr. Rep.1997, 42, 758.Search in Google Scholar
[39] L. W. Schroeder, B. Dickens, W. E. Brown, Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. Solid State Chem.1977, 22, 253.10.1016/0022-4596(77)90002-0Search in Google Scholar
[40] A. A. Belik, V. A. Morozov, S. S. Khasanov, В. I. Lazoryak, Crystal structures of double vanadates Cа9R(VO4)7. I. R=La, Pr, and Eu. Crystallogr. Rep.1997, 42, 751.Search in Google Scholar
[41] A. A. Belik, S. V. Grechkin, L. O. Dmitrienko, V. A. Morozov, S. S. Khasanov, B. I. Lazoryak, Crystal structure of double vanadates Ca9R(VO4)7. IV. R=Er, Tm, Yb, and Lu. Crystallogr. Rep.2000, 45, 896.10.1134/1.1327646Search in Google Scholar
[42] O. V. Baryshnikova, A. P. Malakho, K. K. Kobyletskii, A. A. Fursina, O. N. Leonidova, V. A. Morozov, I. A. Leonidov, S. Y. Stefanovich, B. I. Lazoryak, Ferroelectric solid solution in the Ca3(VO4)2-BiVO4 system. Russ. J. Inorg. Chem.2005, 50, 823.Search in Google Scholar
[43] N. G. Dorbakov, V. V. Grebenev, V. V. Titkov, E. S. Zhukovskaya, S. Y. Stefanovich, O. V. Baryshnikova, D. V. Deyneko, V. A. Morozov, A. A. Belik, B. I. Lazoryak, Influence of magnesium on ferroelectricity in Ca9−x MgxBi(VO4)7 ceramics. J. Am. Ceram. Soc.2018, In press.Search in Google Scholar
[44] M. H. Sandstrom, D. Bostrom, Ca10K(PO4)7 from single-crystal data. Acta Crystallogr. 2006, E62, i253.10.1107/S1600536806047003Search in Google Scholar
[45] A. A. Belik, V. A. Morozov, D. V. Deyneko, A. E. Savon, O. V. Baryshnikova, E. S. Zhukovskaya, N. G. Dorbakov, Y. Katsuya, M. Tanaka, S. Y. Stefanovich, J. Hadermann, B. I. Lazoryak, Antiferroelectric properties and site occupations of R3+ cations in Ca8MgR(PO4)7 luminescent host materials. J. Alloys Comp.2017, 699, 928.10.1016/j.jallcom.2016.12.288Search in Google Scholar
[46] A. P. Malakho, O. L. Vorontsova, V. A. Morozov, S. Y. Stefanovich, B. I. Lazoryak, Ferroelectric and nonlinear optical properties of Ca9−x ZnxBi(VO4)7 vanadates. Russ. J. Inorg. Chem.2004, 49, 125.Search in Google Scholar
[47] O. L. Vorontsova, A. P. Malakho, V. A. Morozov, S. Y. Stefanovich, B. I. Lazoryak, Ferroelectric and nonlinear optical properties of Ca9−x CdxBi(VO4)7 vanadates. Russ. J. Inorg. Chem.2004, 49, 1793.Search in Google Scholar
[48] A. A. Belik, F. Izumi, T. Ikeda, V. A. Morozov, R. A. Dilanian, S. Torii, E. M. Kopnin, O. I. Lebedev, G. Van Tendeloo, B. I. Lazoryak, Positional and orientational disorder in a solid solution of Sr9+x Ni1.5-x (PO4)7 (x=0.3). Chem. Mater.2002, 14, 4464.10.1021/cm0206901Search in Google Scholar
[49] I. A. Leonidov, A. A. Belik, O. N. Leonidova, B. I. Lazoryak, Structural aspects of calcium ion transport in Ca3(VO4)2 and Ca3-xNd2x/3(VO4)2 solid solutions. Russ. J. Inorg. Chem.2002, 47, 305.Search in Google Scholar
[50] D. Wei, Y. Huang, J. S. Kim, L. Shi, H. J. Seo, Electrical properties of Ca9ZnLi(PO4)7 ceramics prepared by reactive pressureless sintering. J. Electron. Mater.2010, 39, 441.10.1007/s11664-010-1119-2Search in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2132).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Review Article
- N Donor substituted acetylacetones – versatile ditopic ligands
- Inorganic Crystal Structures
- Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions
- The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany
- Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal-chemical relationships with other beraunite-type phosphates
- Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
- Temperature dependent optical properties of red emitting Na3GaF6:Mn4+ as a color converter for warm white LEDs
- Organic and Metalorganic Crystal Structures
- Hydrogen bonding in hydroxypyridium salts
- Synthesis and structural characterization of a series of uranyl-betaine coordination complexes
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Review Article
- N Donor substituted acetylacetones – versatile ditopic ligands
- Inorganic Crystal Structures
- Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions
- The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany
- Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal-chemical relationships with other beraunite-type phosphates
- Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
- Temperature dependent optical properties of red emitting Na3GaF6:Mn4+ as a color converter for warm white LEDs
- Organic and Metalorganic Crystal Structures
- Hydrogen bonding in hydroxypyridium salts
- Synthesis and structural characterization of a series of uranyl-betaine coordination complexes