Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
-
David Böhnisch
and Rainer Pöttgen
Abstract
Na3GaF6 and Na3GaF6:Mn4+ samples were obtained from NaNO3 and Ga(NO3)3·9H2O in hydrofluoric acid using K2MnF6 or NaMnO4 as manganese sources. The structure of Na3GaF6 was studied by single crystal X-ray diffraction at 90, 293, 440 and 500 K, confirming the monoclinic cryolite type structure, space group P21/c. The gallium atoms show slightly distorted octahedral coordination by fluorine atoms, similar to the Na1 atoms. Coordination number 8 is observed for Na2. Both sodium sites are clearly distinguished by 23Na MAS-NMR spectroscopy. Above 400 K the spectra reveal distinct chemical exchange effects, signifying sodium ion hopping between these two sites. At the same time static 19F NMR spectra indicate pronounced motional narrowing effects in this temperature region. The nearly invariant 69Ga MAS-NMR spectra suggest that any reorientational motion involving the GaF63− ions (if present) occurs with preservation of the center of mass of these octahedra.
Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft and Merck KGaA Darmstadt, Germany. L. F. thanks the Stiftung der Deutschen Wirtschaft for a personal scholarship.
References
[1] A. F. Holleman, E. Wiberg, N. Wiberg, Anorganische Chemie, 103. Auflage, De Gruyter, Berlin, 2017.Search in Google Scholar
[2] M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, 2. Auflage, Spektrum Akademischer Verlag, Heidelberg, 2011.Search in Google Scholar
[3] St. v. Náray-Szabó, K. Savári, Z. Kristallogr. 1938, 99, 27.10.1524/zkri.1938.99.1.27Search in Google Scholar
[4] E. G. Steward, H. P. Rooksby, Acta Crystallogr. 1953, 6, 49.10.1107/S0365110X53000107Search in Google Scholar
[5] C. W. F. T. Pistorius, J. Solid State Chem. 1975, 13, 208.10.1016/0022-4596(75)90121-8Search in Google Scholar
[6] H. Yang, S. Ghose, D. M. Hatch, Phys. Chem. Miner.1993, 19, 528.10.1007/BF00203053Search in Google Scholar
[7] Q. Zhou, B. J. Kennedy, J. Solid State Chem. 2004, 177, 654.10.1016/j.jssc.2003.08.012Search in Google Scholar
[8] L’. Smrčok, K. Kucharík, M. Tovar, I. Žižak, Cryst. Res. Technol. 2009, 44, 834.10.1002/crat.200900141Search in Google Scholar
[9] O. Bock, U. Müller, Acta Crystallogr. B2002, 58, 594.10.1107/S0108768102001490Search in Google Scholar PubMed
[10] W. Pugh, J. Chem. Soc. 1937, 1046.10.1039/jr9370001046Search in Google Scholar
[11] J. Chassaing, Rev. Chim. Minér. 1968, 5, 1115.Search in Google Scholar
[12] A. Chrétien, J. Chassaing, C. R. Acad. Sci. Paris1966, 263C, 1301.Search in Google Scholar
[13] J. Lu, Q. Zhang, J. Wang, F. Saito, J. Am. Ceram. Soc. 2004, 87, 1814.10.1111/j.1551-2916.2004.01814.xSearch in Google Scholar
[14] J. Yeon, H.-C. zur Loye, J. Chem. Crystallogr. 2017, 47, 129.10.1007/s10870-017-0687-xSearch in Google Scholar
[15] E. Song, T. Deng, Q. Zhang, S. Ye, J. Wang, Faming Zhuanli Shenqing, Patent, CN 2016-10494975; CN 106010514.Search in Google Scholar
[16] T. T. Deng, E. H. Song, J. Sun, L. Y. Wang, Y. Deng, S. Ye, J. Wang, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 2910.10.1039/C7TC00011ASearch in Google Scholar
[17] P. Rawat, S. K. Saroj, M. Gupta, G. V. Prakash, R. Nagarajan, J. Fluorine Chem. 2017, 200, 1.10.1016/j.jfluchem.2017.05.008Search in Google Scholar
[18] T. T. Deng, E. H. Song, Y. Y. Zhou, L. Y. Wang, S. Ye, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 9588.10.1039/C7TC03116ESearch in Google Scholar
[19] T. Jansen, F. Baur, T. Jüstel, J. Lumin.2017, 192, 644.10.1016/j.jlumin.2017.07.061Search in Google Scholar
[20] T. Jansen, T. Jüstel, J. Phys. Chem. Solids2017, 110, 180.10.1016/j.jpcs.2017.06.009Search in Google Scholar
[21] T. Jansen, J. Gorobez, M. Kirm, M. G. Brik, S. Vielhauer, M. Oja, N. M.Khaidukov, V. N.Makhov, T.Jüstel, ECS J. Solid State Sci. Technol.2018, 7, R3086.10.1149/2.0121801jssSearch in Google Scholar
[22] D. Böhnisch, T. Jansen, R. Pöttgen, T. Jüstel, Z. Kristallogr. 2018, 233, 489.10.1515/zkri-2017-2118Search in Google Scholar
[23] H. Bode, H. Jenssen, F. Bandte, Angew. Chem.1953, 65, 304.10.1002/ange.19530651108Search in Google Scholar
[24] T. Takahashi, H. Kawashima, H. Sugisawa, T. Baba, Solid State Nucl. Magn. Reson.1999, 15, 119.10.1016/S0926-2040(99)00039-9Search in Google Scholar
[25] C. Jaeger, F. Hemmann, Solid State Nucl. Magn. Reson.2014, 57–58, 22.10.1016/j.ssnmr.2013.11.002Search in Google Scholar PubMed
[26] D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem.2002, 40, 70.10.1002/mrc.984Search in Google Scholar
[27] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Search in Google Scholar
[28] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[29] I. N. Flerov, M. V. Gorev, J. Grannec, A. Tressaud, J. Fluorine Chem. 2002, 116, 9.10.1016/S0022-1139(02)00068-4Search in Google Scholar
[30] M. Leblanc, V. Maisonnneuve, A. Tressaud, Chem. Rev. 2015, 115, 1191.10.1021/cr500173cSearch in Google Scholar PubMed
[31] G. A. Bain, J. F. Berry, J. Chem. Education2008, 85, 532.10.1021/ed085p532Search in Google Scholar
[32] G. Silly, C. Legein, J. Y. Buzaré, F. Clavayrac, Solid State Nucl. Magn. Reson. 2004, 25, 241.10.1016/j.ssnmr.2003.09.001Search in Google Scholar PubMed
[33] B. Zhou, B. L. Sherriff, J. S. Hartmann, G. Wu, Am. Mineral.2007, 92, 34.10.2138/am.2007.2269Search in Google Scholar
[34] D. A. Spearing, J. F. Stebbins, I. Farnan, Phys. Chem. Miner. 1994, 21, 373.10.1007/BF00203295Search in Google Scholar
[35] M. Kotecha, S. Chaudhuri, C. P. Grey, L. Frydman, J. Am. Chem. Soc. 2005, 127, 16701.10.1021/ja0549749Search in Google Scholar PubMed
[36] T. Krahl, M. Ahrens, G. Scholz, D. Heidemann, E. Kemnitz, Inorg. Chem.2008, 47, 663.10.1021/ic700604sSearch in Google Scholar PubMed
[37] V. Lacassagne, C. Bessada, D. Massiot, P. Florian, J.-P. Coutures, J. Chim. Phys.1998, 95, 322.10.1051/jcp:1998139Search in Google Scholar
[38] M. M. De, V. Steyn, A. M. Heyns, R. B. English, J. Crystallogr. Spectrosc. Res.1984, 14, 505.10.1007/BF01160697Search in Google Scholar
[39] S. Loss, C. Röhr, Z. Naturforsch.1998, 53b, 75.10.1515/znb-1998-0114Search in Google Scholar
[40] J.-X. Mi, S.-M. Luo, H.-Y. Sun, X.-X. Liu, Z.-B. Wei, J. Solid State Chem.2008, 181, 1723.10.1016/j.jssc.2008.03.017Search in Google Scholar
[41] M. J. Reisfeld, Spectrochim. Acta1973, 29A, 1923.Search in Google Scholar
[42] E. M. Anghel, P. Florian, C. Bessada, J. Phys. Chem. B2007, 111, 962.10.1021/jp061977eSearch in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Review Article
- N Donor substituted acetylacetones – versatile ditopic ligands
- Inorganic Crystal Structures
- Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions
- The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany
- Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal-chemical relationships with other beraunite-type phosphates
- Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
- Temperature dependent optical properties of red emitting Na3GaF6:Mn4+ as a color converter for warm white LEDs
- Organic and Metalorganic Crystal Structures
- Hydrogen bonding in hydroxypyridium salts
- Synthesis and structural characterization of a series of uranyl-betaine coordination complexes
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Review Article
- N Donor substituted acetylacetones – versatile ditopic ligands
- Inorganic Crystal Structures
- Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions
- The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany
- Mn-bearing eleonorite from Hagendorf South pegmatite, Germany: crystal structure and crystal-chemical relationships with other beraunite-type phosphates
- Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
- Temperature dependent optical properties of red emitting Na3GaF6:Mn4+ as a color converter for warm white LEDs
- Organic and Metalorganic Crystal Structures
- Hydrogen bonding in hydroxypyridium salts
- Synthesis and structural characterization of a series of uranyl-betaine coordination complexes