Home Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study
Article
Licensed
Unlicensed Requires Authentication

Na3GaF6 – A crystal chemical and solid state NMR spectroscopic study

  • David Böhnisch , Stefan Seidel , Christopher Benndorf , Thomas Jansen , Lena Funke , Rolf-Dieter Hoffmann , Lukas Heletta , Juliane Stahl , Dirk Johrendt , Hellmut Eckert , Thomas Jüstel EMAIL logo and Rainer Pöttgen EMAIL logo
Published/Copyright: February 19, 2018

Abstract

Na3GaF6 and Na3GaF6:Mn4+ samples were obtained from NaNO3 and Ga(NO3)3·9H2O in hydrofluoric acid using K2MnF6 or NaMnO4 as manganese sources. The structure of Na3GaF6 was studied by single crystal X-ray diffraction at 90, 293, 440 and 500 K, confirming the monoclinic cryolite type structure, space group P21/c. The gallium atoms show slightly distorted octahedral coordination by fluorine atoms, similar to the Na1 atoms. Coordination number 8 is observed for Na2. Both sodium sites are clearly distinguished by 23Na MAS-NMR spectroscopy. Above 400 K the spectra reveal distinct chemical exchange effects, signifying sodium ion hopping between these two sites. At the same time static 19F NMR spectra indicate pronounced motional narrowing effects in this temperature region. The nearly invariant 69Ga MAS-NMR spectra suggest that any reorientational motion involving the GaF63− ions (if present) occurs with preservation of the center of mass of these octahedra.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and Merck KGaA Darmstadt, Germany. L. F. thanks the Stiftung der Deutschen Wirtschaft for a personal scholarship.

References

[1] A. F. Holleman, E. Wiberg, N. Wiberg, Anorganische Chemie, 103. Auflage, De Gruyter, Berlin, 2017.Search in Google Scholar

[2] M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, Allgemeine und Anorganische Chemie, 2. Auflage, Spektrum Akademischer Verlag, Heidelberg, 2011.Search in Google Scholar

[3] St. v. Náray-Szabó, K. Savári, Z. Kristallogr. 1938, 99, 27.10.1524/zkri.1938.99.1.27Search in Google Scholar

[4] E. G. Steward, H. P. Rooksby, Acta Crystallogr. 1953, 6, 49.10.1107/S0365110X53000107Search in Google Scholar

[5] C. W. F. T. Pistorius, J. Solid State Chem. 1975, 13, 208.10.1016/0022-4596(75)90121-8Search in Google Scholar

[6] H. Yang, S. Ghose, D. M. Hatch, Phys. Chem. Miner.1993, 19, 528.10.1007/BF00203053Search in Google Scholar

[7] Q. Zhou, B. J. Kennedy, J. Solid State Chem. 2004, 177, 654.10.1016/j.jssc.2003.08.012Search in Google Scholar

[8] L’. Smrčok, K. Kucharík, M. Tovar, I. Žižak, Cryst. Res. Technol. 2009, 44, 834.10.1002/crat.200900141Search in Google Scholar

[9] O. Bock, U. Müller, Acta Crystallogr. B2002, 58, 594.10.1107/S0108768102001490Search in Google Scholar PubMed

[10] W. Pugh, J. Chem. Soc. 1937, 1046.10.1039/jr9370001046Search in Google Scholar

[11] J. Chassaing, Rev. Chim. Minér. 1968, 5, 1115.Search in Google Scholar

[12] A. Chrétien, J. Chassaing, C. R. Acad. Sci. Paris1966, 263C, 1301.Search in Google Scholar

[13] J. Lu, Q. Zhang, J. Wang, F. Saito, J. Am. Ceram. Soc. 2004, 87, 1814.10.1111/j.1551-2916.2004.01814.xSearch in Google Scholar

[14] J. Yeon, H.-C. zur Loye, J. Chem. Crystallogr. 2017, 47, 129.10.1007/s10870-017-0687-xSearch in Google Scholar

[15] E. Song, T. Deng, Q. Zhang, S. Ye, J. Wang, Faming Zhuanli Shenqing, Patent, CN 2016-10494975; CN 106010514.Search in Google Scholar

[16] T. T. Deng, E. H. Song, J. Sun, L. Y. Wang, Y. Deng, S. Ye, J. Wang, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 2910.10.1039/C7TC00011ASearch in Google Scholar

[17] P. Rawat, S. K. Saroj, M. Gupta, G. V. Prakash, R. Nagarajan, J. Fluorine Chem. 2017, 200, 1.10.1016/j.jfluchem.2017.05.008Search in Google Scholar

[18] T. T. Deng, E. H. Song, Y. Y. Zhou, L. Y. Wang, S. Ye, Q. Y. Zhang, J. Mater. Chem. C2017, 5, 9588.10.1039/C7TC03116ESearch in Google Scholar

[19] T. Jansen, F. Baur, T. Jüstel, J. Lumin.2017, 192, 644.10.1016/j.jlumin.2017.07.061Search in Google Scholar

[20] T. Jansen, T. Jüstel, J. Phys. Chem. Solids2017, 110, 180.10.1016/j.jpcs.2017.06.009Search in Google Scholar

[21] T. Jansen, J. Gorobez, M. Kirm, M. G. Brik, S. Vielhauer, M. Oja, N. M.Khaidukov, V. N.Makhov, T.Jüstel, ECS J. Solid State Sci. Technol.2018, 7, R3086.10.1149/2.0121801jssSearch in Google Scholar

[22] D. Böhnisch, T. Jansen, R. Pöttgen, T. Jüstel, Z. Kristallogr. 2018, 233, 489.10.1515/zkri-2017-2118Search in Google Scholar

[23] H. Bode, H. Jenssen, F. Bandte, Angew. Chem.1953, 65, 304.10.1002/ange.19530651108Search in Google Scholar

[24] T. Takahashi, H. Kawashima, H. Sugisawa, T. Baba, Solid State Nucl. Magn. Reson.1999, 15, 119.10.1016/S0926-2040(99)00039-9Search in Google Scholar

[25] C. Jaeger, F. Hemmann, Solid State Nucl. Magn. Reson.2014, 57–58, 22.10.1016/j.ssnmr.2013.11.002Search in Google Scholar PubMed

[26] D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem.2002, 40, 70.10.1002/mrc.984Search in Google Scholar

[27] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Search in Google Scholar

[28] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[29] I. N. Flerov, M. V. Gorev, J. Grannec, A. Tressaud, J. Fluorine Chem. 2002, 116, 9.10.1016/S0022-1139(02)00068-4Search in Google Scholar

[30] M. Leblanc, V. Maisonnneuve, A. Tressaud, Chem. Rev. 2015, 115, 1191.10.1021/cr500173cSearch in Google Scholar PubMed

[31] G. A. Bain, J. F. Berry, J. Chem. Education2008, 85, 532.10.1021/ed085p532Search in Google Scholar

[32] G. Silly, C. Legein, J. Y. Buzaré, F. Clavayrac, Solid State Nucl. Magn. Reson. 2004, 25, 241.10.1016/j.ssnmr.2003.09.001Search in Google Scholar PubMed

[33] B. Zhou, B. L. Sherriff, J. S. Hartmann, G. Wu, Am. Mineral.2007, 92, 34.10.2138/am.2007.2269Search in Google Scholar

[34] D. A. Spearing, J. F. Stebbins, I. Farnan, Phys. Chem. Miner. 1994, 21, 373.10.1007/BF00203295Search in Google Scholar

[35] M. Kotecha, S. Chaudhuri, C. P. Grey, L. Frydman, J. Am. Chem. Soc. 2005, 127, 16701.10.1021/ja0549749Search in Google Scholar PubMed

[36] T. Krahl, M. Ahrens, G. Scholz, D. Heidemann, E. Kemnitz, Inorg. Chem.2008, 47, 663.10.1021/ic700604sSearch in Google Scholar PubMed

[37] V. Lacassagne, C. Bessada, D. Massiot, P. Florian, J.-P. Coutures, J. Chim. Phys.1998, 95, 322.10.1051/jcp:1998139Search in Google Scholar

[38] M. M. De, V. Steyn, A. M. Heyns, R. B. English, J. Crystallogr. Spectrosc. Res.1984, 14, 505.10.1007/BF01160697Search in Google Scholar

[39] S. Loss, C. Röhr, Z. Naturforsch.1998, 53b, 75.10.1515/znb-1998-0114Search in Google Scholar

[40] J.-X. Mi, S.-M. Luo, H.-Y. Sun, X.-X. Liu, Z.-B. Wei, J. Solid State Chem.2008, 181, 1723.10.1016/j.jssc.2008.03.017Search in Google Scholar

[41] M. J. Reisfeld, Spectrochim. Acta1973, 29A, 1923.Search in Google Scholar

[42] E. M. Anghel, P. Florian, C. Bessada, J. Phys. Chem. B2007, 111, 962.10.1021/jp061977eSearch in Google Scholar PubMed

Received: 2017-11-27
Accepted: 2018-1-29
Published Online: 2018-2-19
Published in Print: 2018-7-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2138/html
Scroll to top button