Abstract
Single crystals of two novel uranyl sulfates and two novel uranyl selenates with protonated cyclen and 3-aminotropane molecules, ((C8H24N4)[(UO2)3(SO4)5](H2O)3 (I), (C8H24N4)(H5O2)(H3O)[(UO2)4(SeO4)7(H2O)](H2O)6.6 (II), (C8H18N2)(H5O2)(H3O)[(UO2)3(SO4)5(H2O)](H2O)0.5 (III), and (C8H18N2)(H5O2)(H3O)[(UO2)3(SeO4)5 (H2O)](H2O)2 (IV) have been prepared by isothermal evaporation from aqueous solutions and structurally characterized. Uranyl-containing 2D units have been investigated using topological approach and information-based complexity measures demonstrating that complex topologies form more rare than their simplest counterparts, which is a response of the crystal structure to changes of chemical conditions within the system.
Acknowledgements
This work was supported by the President of Russian Federation grants for young scientists (to VVG, no. MK-6209.2016.5) and Russian Foundation for Basic Research (to OST, no. 16-33-60142-mol-a-dk). X-ray diffraction studies were carried out in the X-ray Diffraction Centre of St. Petersburg State University.
References
[1] S. V. Krivovichev, P. C. Burns, I. G. Tananaev, Structural Chemistry of Inorganic Actinide Compounds. Elsevier, Netherlands, 2007.Suche in Google Scholar
[2] P. C. Burns, G. E. Sigmon, Uranium: Cradle to Grave. Short Course Series, Vol. 43. Mineralogical Association of Canada, Canada, 2013.Suche in Google Scholar
[3] S. V. Krivovichev, Crystal chemistry of uranium oxides and minerals. in Comprehensive Inorganic Chemistry II, 2nd ed. (Eds. J. Reedijk and K. R. Poeppelmeier) Transition Elements, Lanthanides and Actinides, Vol. 2, Elsevier, Oxford, p. 611, 2013.10.1016/B978-0-08-097774-4.00227-8Suche in Google Scholar
[4] A. J. Lussier, R. A. K. Lopez, P. C. Burns, Can. Mineral.2016, 54, 177.10.3749/canmin.1500078Suche in Google Scholar
[5] V. V. Gurzhiy, O. S. Tyumentseva, S. V. Krivovichev, V. G. Krivovichev, I. G. Tananaev, Cryst. Growth Des. 2016, 16, 4482.10.1021/acs.cgd.6b00611Suche in Google Scholar
[6] V. V. Gurzhiy, O. S. Tyumentseva, S. V. Krivovichev, I. G. Tananaev, Solid State Chem. 2017, 248, 126.10.1016/j.jssc.2017.02.005Suche in Google Scholar
[7] G. M. Sheldrick, SADABS. Univ. Gottingen, Germany 2007.Suche in Google Scholar
[8] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar
[9] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.10.1107/S0021889808042726Suche in Google Scholar
[10] V. V. Gurzhiy, V. M. Kovrugin, O. S. Tyumentseva, P. A. Mikhailenko, S. V. Krivovichev, I. G. Tananaev, J. Solid State Chem. 2015, 229, 32.10.1016/j.jssc.2015.04.040Suche in Google Scholar
[11] V. V. Gurzhiy, O. S. Tymentseva, D. V. Tyshchenko, S. V. Krivovichev, I. G. Tananaev, Mendeleev Commun. 2016, 26, 309.10.1016/j.mencom.2016.07.014Suche in Google Scholar
[12] V. V. Gurzhiy, O. S. Tymentseva, S. N. Britvin, S. V. Krivovichev, I. G. Tananaev, J. Mol. Struct. 2018, 1151, 88.10.1016/j.molstruc.2017.09.042Suche in Google Scholar
[13] V. V. Gurzhiy, S. V. Krivovichev, I. G. Tananaev, J. Solid State Chem. 2017, 247, 105.10.1016/j.jssc.2017.01.005Suche in Google Scholar
[14] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr.2017, B72, 171.10.1107/S2052520616003954Suche in Google Scholar
[15] J. H. Reibenspies, O. P. Anderson, Acta Crystallogr.1990, C46, 163.10.1107/S0108270189008012Suche in Google Scholar
[16] M. S. Fonari, Y. A. Simonov, V. C. Kravtsov, V. O. Gelmboldt, E. V. Ganin, Y. A. Popkov, L. V. Ostapchuk, J. Inclusion Phenom. Mol. Recog. Chem.1998, 30, 197.10.1023/A:1007932615687Suche in Google Scholar
[17] S.-Y. Kim, I.-S. Jung, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi, K. Kim, Angew. Chem. Int. Ed.2001, 40, 2119.10.1002/1521-3773(20010601)40:11<2119::AID-ANIE2119>3.0.CO;2-4Suche in Google Scholar
[18] I. Bull, P. S. Wheatley, P. Lightfoot, R. E. Morris, E. Sastre, P. A. Wright, Chem. Commun.2002, 2002, 1180.10.1039/b202500kSuche in Google Scholar
[19] A. C. Warden, M. Warren, M. T. W. Hearn, L. Spiccia, New J. Chem. 2004, 28, 1160.10.1039/b401841aSuche in Google Scholar
[20] S. N. Britvin, A. M. Rumyantsev, Acta Crystallogr.2017, E73, 1712.Suche in Google Scholar
[21] S. V. Krivovichev, Crystallogr. Rev.2004, 10, 185.10.1080/0889311042000261825Suche in Google Scholar
[22] S. V. Krivovichev, Structural Crystallography of Inorganic Oxysalts. Oxford University Press, Oxford, 2008.10.1093/acprof:oso/9780199213207.001.1Suche in Google Scholar
[23] S. V. Krivovichev, P. C. Burns, Z. Kristallogr. 2003, 218, 683.10.1524/zkri.218.10.683.20760Suche in Google Scholar
[24] P. S. Halasyamani, R. J. Francis, S. M. Walker, D. O’Hare, Inorg. Chem. 1999, 38, 271.10.1021/ic980836rSuche in Google Scholar
[25] M. S. Grigor’ev, A. M. Fedoseev, N. A. Budantseva, Russ. J. Coord. Chem. 2003, 29, 877.10.1023/B:RUCO.0000008401.05898.59Suche in Google Scholar
[26] S. V. Krivovichev and V. Kahlenberg, Z. Anorg. Allg. Chem. 2004, 630, 2736.10.1002/zaac.200400293Suche in Google Scholar
[27] S. V. Krivovichev and V. Kahlenberg, J. Alloys Comp. 2005, 395, 41.10.1016/j.jallcom.2004.11.028Suche in Google Scholar
[28] S. V. Krivovichev, Acta Crystallogr.2012, A68, 393.10.1107/S0108767312012044Suche in Google Scholar PubMed
[29] S. V. Krivovichev, Angew. Chem. Int. Ed. 2014, 53, 654.10.1002/anie.201304374Suche in Google Scholar PubMed
[30] S. V. Krivovichev, Mineral. Mag. 2013, 77, 654.10.1180/minmag.2013.077.3.05Suche in Google Scholar
[31] S. V. Krivovichev, A. A. Zolotarev, V. I. Popova, Struct. Chem. 2016, 27, 1715.10.1007/s11224-016-0820-zSuche in Google Scholar
[32] S. V. Krivovichev, F. C. Hawthorne, P. A. Williams, Struct. Chem. 2017, 28, 153.10.1007/s11224-016-0792-zSuche in Google Scholar
[33] J. Cempirek, E. S. Grew, A. R. Kampf, C. Ma, M. Novak, P. Gadas, R. Skoda, M. Vasinova-Galiova, F. Pezzotta, L. A. Groat, S. V. Krivovichev, Am. Mineral.2016, 101, 2108.10.2138/am-2016-5686Suche in Google Scholar
[34] J. Plášil, Eur. J. Mineral. 2018, 30, in press. https://doi.org/ 10.1127/ejm/2017/0029-2690.Suche in Google Scholar
[35] J. Plášil, V. Petříček, J. Majzlan, Acta Crystallogr.2017, B73, 856.10.1107/S2052520617007156Suche in Google Scholar
[36] J. Majzlan, E. Dachs, A. Benisek, J. Plášil, J. Sejkora, Eur. J. Mineral. 2018, 30, in press. https://doi.org/10.1127/ejm/2017/0029-2677.10.1127/ejm/2017/0029-2677Suche in Google Scholar
[37] J. Plášil, Eur. J. Mineral. 2018, 30, in press. https://doi.org/ 10.1127/ejm/2017/0029-2691.Suche in Google Scholar
[38] V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Crystallogr. 2000, 33, 1193.10.1107/S0021889800007202Suche in Google Scholar
[39] S. V. Krivovichev, V. V. Gurzhiy, I. G. Tananaev, B. F. Myasoedov, Z. Kristallogr. 2009, 224, 316.10.1524/zkri.2009.1145Suche in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2129).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Special issue “Deciphering the complexity of mineral structures”
- Preface
- Ladders of information: what contributes to the structural complexity of inorganic crystals
- Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline
- Derivative structures based on the sphere packing
- From structure topology to chemical composition. XXV: new insights into the close packing of cations in the structures of the seidozerite-supergroup TS-block minerals
- The (3+3) commensurately modulated structure of the uranyl silicate mineral swamboite-(Nd), Nd0.333[(UO2)(SiO3OH)](H2O)2.41
- Cyclic polyamines as templates for novel complex topologies in uranyl sulfates and selenates
- Old defined minerals with complex, still unresolved structures: the case of stützite, Ag5−x Te3
- The incommensurately modulated crystal structure of roshchinite, Cu0.09Ag1.04Pb0.65Sb2.82As0.37S6.08
- Another step toward the solution of the real structure of zinkenite
- Reexamination of the crystal structure of semseyite, Pb9Sb8S21
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Special issue “Deciphering the complexity of mineral structures”
- Preface
- Ladders of information: what contributes to the structural complexity of inorganic crystals
- Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline
- Derivative structures based on the sphere packing
- From structure topology to chemical composition. XXV: new insights into the close packing of cations in the structures of the seidozerite-supergroup TS-block minerals
- The (3+3) commensurately modulated structure of the uranyl silicate mineral swamboite-(Nd), Nd0.333[(UO2)(SiO3OH)](H2O)2.41
- Cyclic polyamines as templates for novel complex topologies in uranyl sulfates and selenates
- Old defined minerals with complex, still unresolved structures: the case of stützite, Ag5−x Te3
- The incommensurately modulated crystal structure of roshchinite, Cu0.09Ag1.04Pb0.65Sb2.82As0.37S6.08
- Another step toward the solution of the real structure of zinkenite
- Reexamination of the crystal structure of semseyite, Pb9Sb8S21