Startseite A guide to lifting aperiodic structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A guide to lifting aperiodic structures

  • Michael Baake EMAIL logo , David Écija und Uwe Grimm
Veröffentlicht/Copyright: 17. September 2016

Abstract

The embedding of a given point set with non-crystallographic symmetry into higher-dimensional space is reviewed, with special emphasis on the Minkowski embedding known from number theory. This is a natural choice that does not require an a priori construction of a lattice in relation to a given symmetry group. Instead, some elementary properties of the point set in physical space are used, and explicit methods are described. This approach works particularly well for the standard symmetries encountered in the practical study of quasicrystalline phases. We also demonstrate this with a recent experimental example, taken from a sample with square-triangle tiling structure and (approximate) 12-fold symmetry.

Acknowledgments

It is our pleasure to thank Johannes Roth for useful hints. We are grateful to Johannes V. Barth, Nian Lin and José I. Urgel for providing the experimental image from [14]. D.É. would like to thank the TU Munich physics department for hospitality, where part of the research was done. This work was supported by the German Research Foundation (DFG), within the CRC 701, as well as by the Spanish Ministerio de Economa y Competitividad (project FIS 2015-67287-P).

References

[1] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett.1984, 53, 1951.10.1103/PhysRevLett.53.1951Suche in Google Scholar

[2] M. Baake, R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine und Angew. Math.(Crelle) 2004, 573, 61; arXiv:math.MG/0203030.10.1515/crll.2004.064Suche in Google Scholar

[3] W. Steurer, Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr.2004, 219, 391.10.1524/zkri.219.7.391.35643Suche in Google Scholar

[4] M. Baake, U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, 2013.10.1017/CBO9781139025256Suche in Google Scholar

[5] R. V. Moody, Model sets: A survey, in, From Quasicrystals to More Complex Systems, (Eds. F. Axel, F. Dénoyer, J. P. Gazeau) EDP Sciences, Les Ulis, and Springer, Berlin, p. 145, 2000; arXiv:math.MG/0002020.Suche in Google Scholar

[6] C. L. Henley, Random tiling models, in, Quasicrystals: The State of the Art, 2nd ed., (Eds. D. P. DiVincenzo, P. J. Steinhardt) World Scientific, Singapore, p. 459, 1999.10.1142/9789812815026_0015Suche in Google Scholar

[7] M. Conrad, F. Krumeich, B. Harbrecht, A dodecagonal quasi-crystalline chalcogenide, Angew. Chem. Int. Ed.1998, 37, 1383.10.1002/(SICI)1521-3773(19980605)37:10<1383::AID-ANIE1383>3.0.CO;2-RSuche in Google Scholar

[8] T. Ishimasa, H.-U. Nissen, Y. Fukano, New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett.1985, 55, 511.10.1103/PhysRevLett.55.511Suche in Google Scholar

[9] T. Dotera, T. Oshiro, P. Ziherl, Mosaic two-lengthscale quasi-crystals. Nature2014, 506, 208.10.1038/nature12938Suche in Google Scholar

[10] R. Lifshitz, H. Diamant, Soft quasicrystals – Why are they stable? Phil. Mag.2007, 87, 3021; arXiv:cond-mat/0611115.10.1080/14786430701358673Suche in Google Scholar

[11] J. Mikhael, J. Roth, L. Helden, C. Bechinger, Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature2008, 454, 501.10.1038/nature07074Suche in Google Scholar

[12] X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, J. K. Hobbs, Supramolecular dendritic liquid quasicrystals, Nature2004, 428, 157.10.1038/nature02368Suche in Google Scholar PubMed

[13] F. Gähler, Quasicrystal Structures from the Crystallographic Viewpoint, PhD thesis no. 8414, 1988, ETH Zürich.Suche in Google Scholar

[14] J. I. Urgel, D. Écija, G. Lyu, R. Zhang, C.-A. Palma, W. Auwärter, N. Lin, J. V. Barth, Quasicrystallinity expressed in two-dimensional coordination networks. Nature Chem.2016, 8, 657.10.1038/nchem.2507Suche in Google Scholar PubMed

[15] T. Ishimasa, Dodecagonal quasicrystals still in progress. Isr. J. Chem.2011, 51, 1216.10.1002/ijch.201100134Suche in Google Scholar

Received: 2016-6-24
Accepted: 2016-7-21
Published Online: 2016-9-17
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1982/html
Button zum nach oben scrollen