Abstract
Twinning is a phenomenon complicating structure analysis of single crystals of standard as well as modulated structures. Jana2006 as a software for advanced structure analysis contains tools for recognition and refinement of twins including most complicated cases of modulated and magnetic structures. In order to efficiently use the tools of Jana2006 related to twinning, we explain the basic terminology and the underlying theory, especially the symmetry of the diffraction patterns affected by twinning. We present typical diffraction patterns of twins and show how twinning can be recognized or detected by various tools and described with twinning matrices. Data processing of twins and ways of how they can be imported to Jana2006 are also discussed. Two examples demonstrate the solution of typical twins: twinning by metric merohedry and twinning by reticular merohedry, followed by the third example demonstrating twinning in a commensurately modulated structure. The relationship between the dimensionality of the structure and twinning is discussed, too.
Acknowledgments
We acknowledge support of the Czech Science Foundation project 15-12653S and 14-03276S. We thank to Mathias Meyer for explanations concerning the hklf5 format in Crysalis, Pascal Roussel, Ivana Císařová and Olivier Perez for information about possibilities of APEX and related software, Michael Ruf and Charles Campana for supplying data of modulated Pseudoephedrine Hydrochloride. We also acknowledge Brahim El Bali for providing us with a sample necessary, for example, on reticular twinning.
References
[1] N. Steno, De solido intra solidum naturaliter contento dissertationis prodromus. Typographia sub signo Stellæ, Firenze, 1669.10.5962/bhl.title.148841Suche in Google Scholar
[2] G. Friedel, Étude sur les groupements cristallins. 1904.Suche in Google Scholar
[3] G. Friedel, Leçons de Cristallographie. Nancy, Paris, Strasbourg: Berger-Levrault, 1926, XIX, 602.Suche in Google Scholar
[4] M. Catti, G. Ferraris, Acta Crystallogr.1976, A32, 163.10.1107/S0567739476000326Suche in Google Scholar
[5] M. Nespolo, G. Ferraris, Twinning by syngonic and metric merohedry. Analysis, classification and effects on the diffraction pattern. Z. Kristallogr.2000, 212, 77.10.1524/zkri.2000.215.2.77Suche in Google Scholar
[6] A. Yamamoto, Structure factor of modulated crystal structures. Acta Crystallogr.1982, A38, 87.10.1107/S0567739482000163Suche in Google Scholar
[7] V. Petříček, P. Coppens, P. Becker, Structure analysis of displacively modulated molecular crystals. Acta Crystallogr.1985, A41, 478.10.1107/S0108767385001027Suche in Google Scholar
[8] I. Císařová, C. Novák, V. Petříček, B. Kratochvíl, J. Loub, The structure of twinned manganese(Ill) hydrogenbis(orthophosphite) dihydrate. Acta Crystallogr.1982, B38, 1687.10.1107/S0567740882006955Suche in Google Scholar
[9] V. Petříček, I. Císařová, V. Šubrtová, Structure of σ(+)-5-Bromo-6,9-bis(dimethylsulphido)-nido-deeaborane(12), C4H23B10BrS2, determined with a twinned crystal. Acta Crystallogr.1983, C39, 1070.10.1107/S0108270183007416Suche in Google Scholar
[10] R. Herbst-Irmer, G. M. Sheldrick, Refinement of twinned structures with SHELXL97. Acta Crystallogr.1998, B54, 443.10.1107/S0108768197018454Suche in Google Scholar
[11] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed
[12] Crysalis Pro, Rigaku Oxford diffraction, 2016.Suche in Google Scholar
[13] APEX (SMART, SAINT, SAINT-Plus, CELL NOW, SADABS, TWINABS), Bruker AXS Inc., 2016.Suche in Google Scholar
[14] S. Parsons, Introduction to twinning. Acta Crystallogr.2003, D59, 1995.10.1093/acprof:oso/9780199219469.003.0018Suche in Google Scholar
[15] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006 – General features. Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
[16] M. Nespolo, G. Ferraris, Geminography – The science of twinning applied to the early-stage derivation of non-merohedric twin laws. Z. Kristallogr.2003, 218, 178.10.1524/zkri.218.3.178.20752Suche in Google Scholar
[17] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr.2009, D 65, 148.10.1107/S090744490804362XSuche in Google Scholar PubMed PubMed Central
[18] R. O. Gould, S. Parsons, D. J. Watkin, The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program. J. Appl. Cryst.2002, 35, 168.10.1107/S0021889802000249Suche in Google Scholar
[19] T. Hahn, H. Klapper, H., Twinning of crystals. Sect. 3.3, in, InternationalTables for Crystallography, Vol. D, (Ed. A. Authier). International Union of Crystallography, Springer, 2013, 413.10.1107/97809553602060000917Suche in Google Scholar
[20] D. C. Rees, The influence of twinning by merohedry on intensity statistics. Acta Crystallogr.1980, A36, 578.10.1107/S0567739480001234Suche in Google Scholar
[21] D. Britton, Estimation of twinning parameter for twins with exactly superimposed reciprocal lattices. Acta Crystallogr.1972, A28, 296.10.1107/S0567739472000786Suche in Google Scholar
[22] T. O. Yeates, Simple statistics for intensity data from twinned specimens. Acta Crystallogr.1988, A44, 142.10.1107/S0108767387009632Suche in Google Scholar
[23] J. E. Paddila, T. O. Yeates, A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr.2003, D44, 1124.10.1107/S0907444903007947Suche in Google Scholar PubMed
[24] V. Kahlenberg, Application and comparison of different tests on twinning by merohedry. Acta Crystallogr.1999, B55, 745.10.1107/S010876819900590XSuche in Google Scholar
[25] E. Skořepová, M. Hušák, L. Ridvan, M. Tkadlecová, J. Havlíček, M. Dušek, Iodine salts of a pharmaceutical compound agomelatine: effect of symmetric H-bond on amide protonation. CrystEngComm2016, 18, 4518.10.1039/C6CE00304DSuche in Google Scholar
[26] J. Černák, A. Pavlová, M. Dušek, K. Fejfarová, Bis(di-2-pyridylamine-κ2N2,N2’)(nitrato-κ2O,O’)nickel(II)nitrate. Acta Crystallogr.2009, C65, m260.10.1107/S0108270109021131Suche in Google Scholar PubMed
[27] E. Gaudin, V. Petříček, F. Boucher, F. Taulelle, M. Evain, Structures and phase transitions of the A7PSe6 (A=Ag, Cu) argyrodite-type ionic conductors. III. α-Cu7PSe6. Acta Crystallogr.2000, B64, 972.10.1107/S0108768100010260Suche in Google Scholar
[28] L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst.2007, 41, 786.10.1107/S0021889807029238Suche in Google Scholar
[29] P. Murray-Rust, The crystal structure of [Co(NH3)6]4Cu5CI17: a twinned cubic crystal. Acta Crystallogr.1973, B29, 2559.10.1107/S0567740873007004Suche in Google Scholar
[30] L. Bindi, P. Bonazzi, M. Dušek, V. Petříček, G. Chapuis, Five-dimensional structure refinement of natural melilite, (Ca1.89Sr0.01Na0.08K0.02)(Mg0.92Al0.08)-(Si1.98Al0.02)O7. Acta Crystallogr.2001, B57, 112. 739.10.1107/S0108768101014495Suche in Google Scholar PubMed
[31] M. D. Welch, J. Jürgen Konzett, L. Bindi, S. C. Kohn, D. J. Frost, New structural features of the high-pressure synthetic sheet-disilicate Phase-X, K(2−x)Mg2Si2O7Hx. Am. Mineral.2012, 97, 1849.10.2138/am.2012.4164Suche in Google Scholar
[32] M. D. Welch, L. Bindi, V. Petříček, J. Plášil, Vacancy pairing and superstructure in the high-pressure silicate K1.5Mg2Si2O7H0.5: a new potential host for potassium in the deep Earth. Acta Crystallogr.2016, accepted for publication.10.1107/S2052520616014049Suche in Google Scholar PubMed
[33] K. Friese, A. Hönnerscheid, M. Jansen, Crystal structure determination of systematically intergrown compounds: Li5(OH)2Br3 and Li2(OH)Br. Z. Kristallogr.2003, 218, 536.10.1524/zkri.218.8.536.20686Suche in Google Scholar
[34] D. Topa, V. Petříček, M. Dušek, E. Makovicky, T. Balić-Žunić, Simultaneous refinement of two components of an exsolution intergrowth: crystal structures of the lindströmite – krupkaite pair. Can. Mineral.2008, 46, 525.10.3749/canmin.46.2.525Suche in Google Scholar
[35] H. Krüger, V. Kahlenberg, V. Petříček, F. Phillipp, W. Wertl, High-temperature structural phase transition in Ca2Fe2O5 studied by in-situ X-ray diffraction and transmission electron microscopy. J. Solid State Chem.2009, 182, 1515.10.1016/j.jssc.2009.03.027Suche in Google Scholar
[36] Y. Le Page, The derivation of the axes of the conventional unit cell from the dimensions of the Buerger-reduced cell. J. Appl. Cryst.1982, 15, 255.10.1107/S0021889882011959Suche in Google Scholar
[37] T. Hahn, The 230 space groups. Sect. 7.1, in, InternationalTables for Crystallography, Vol. A, (Ed. T. Hahn). International Union of Crystallography, Springer, 2006, 413.Suche in Google Scholar
[38] F. Laufek, A. Vymazalová, M. Drábek, M. Dušek, J. Navrátil, E. Černošková, The crystal structure of Pd3HgTe3, the synthetic analogue of temagamite. Eur. J. Mineral.2016, accepted.10.1127/ejm/2016/0028-2547Suche in Google Scholar
[39] S. van Smaalen, Incommensurate Crystallography – Chapter 5.3, Oxford University Press, Oxford, 2007.10.1093/acprof:oso/9780198570820.001.0001Suche in Google Scholar
[40] M. Mathew, M. Palenik, The crystal and molecular structures of (+)-pseudoephedrine and (+) pseudoephedrine hydroehloride. Acta Crystallogr.1977, B33, 1016.10.1107/S0567740877005287Suche in Google Scholar
[41] M. Ruf, Ch. Campana, data collection and data reduction techniques for modulated structures. Bruker presentation, 2013. Available at https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/SC-XRD/Webinars/Bruker_AXS_Advanced_Crystallography_Modulated_Structures_20130226.pdf.Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Solution and refinement of twinned structures
- Obituary
- Theo Hahn (1928–2016)
- Unravelling the diffraction pattern of a twin. I. Fundamentals
- Detection of twinning in macromolecular crystallography
- Twinning in chemical crystallography – a practical guide
- Crystallographic computing system Jana2006: solution and refinement of twinned structures
- Pseudo-symmetry analysis to unravel the secrets of twins – a case study with four diverse examples
- Allotwinning and OD-structures – the example of malonamide
- Twinned CsLn2F7 compounds (Ln=Nd, Gd, Tb, Er, Yb): the role of a highly symmetrical cation lattice with an arrangement analogous to the Laves phase MgZn2
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Solution and refinement of twinned structures
- Obituary
- Theo Hahn (1928–2016)
- Unravelling the diffraction pattern of a twin. I. Fundamentals
- Detection of twinning in macromolecular crystallography
- Twinning in chemical crystallography – a practical guide
- Crystallographic computing system Jana2006: solution and refinement of twinned structures
- Pseudo-symmetry analysis to unravel the secrets of twins – a case study with four diverse examples
- Allotwinning and OD-structures – the example of malonamide
- Twinned CsLn2F7 compounds (Ln=Nd, Gd, Tb, Er, Yb): the role of a highly symmetrical cation lattice with an arrangement analogous to the Laves phase MgZn2