Abstract
The rare earth-based zinc compounds RE13Pd25+xZn28–x (RE = Y, Ho–Lu) were synthesized from the elements in sealed niobium ampoules with a maximum reaction temperature of 1470 K followed by different annealing sequences. The structures of all compounds were refined from single crystal X-ray diffraction data, indicating substantial Zn/Pd mixing on one 8c and one 24g zinc site. Exemplarily, the homogeneity range of the solid solution Yb13Pd25+xZn28–x was manifested from samples of different starting compositions and five single crystal data sets. The RE13Pd25+xZn28–x structures are cubic, space group I4̅3m with lattice parameters ranging from 1295 to 1307 pm, as a function of the rare earth element and the Zn/Pd mixing. Hierarchically, one can derive the RE13Pd25+xZn28–x structures from the simple bcc packing. A group–subgroup scheme was developed for this new 4 × 4 × 4 tungsten superstructure which shows vacancy ordering and dumbbell formation. Temperature dependent magnetic susceptibility measurements show diamagnetism for a Lu13Pd29Zn24 sample and Curie–Weiss paramagnetism for Tm13Pd29Zn24 down to 3 K.
Acknowledgments:
We thank Dipl.-Ing. Ute Ch. Rodewald and Dr. Timo Bartsch for collecting the single crystal intensity data. B.G. and O.N. are indebted to the Fonds der Chemischen Industrie and the NRW Forschungsschule Molecules and Materials – A Common Design Principle for PhD fellowships.
References
[1] R. Pöttgen, D. Johrendt, Intermetallics – Synthesis, Structure, Function, De Gruyter, Berlin, 2014.10.1524/9783486856187Suche in Google Scholar
[2] R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Suche in Google Scholar
[3] M. H. F. Sluiter, Phase Trans. 2007, 80, 299.10.1080/01411590701228562Suche in Google Scholar
[4] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds(release 2015/16), ASM International®, Materials Park, Ohio (USA) 2015.Suche in Google Scholar
[5] M. Kersting, O. Niehaus, R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2013, 228, 643.10.1524/zkri.2013.1692Suche in Google Scholar
[6] M. Kersting, O. Niehaus, R.-D. Hoffmann, U. C. Rodewald, R. Pöttgen, Z. Kristallogr. 2014, 229, 285.10.1515/zkri-2013-1717Suche in Google Scholar
[7] M. Kersting, U. Ch. Rodewald, R. Pöttgen, Z. Kristallogr. 2015, 230, 151.10.1515/zkri-2014-1831Suche in Google Scholar
[8] O. Heusler, Ann. Phys. 1934, 19, 155.10.1002/andp.19344110205Suche in Google Scholar
[9] R. Lux, V. Kuntze, H. Hillebrecht, Solid State Sci. 2012, 14, 1445.10.1016/j.solidstatesciences.2012.07.028Suche in Google Scholar
[10] A. Koffi, M. Ade, H. Hillebrecht, Z. Anorg. Allg. Chem. 2016, 642, 350.10.1002/zaac.201500800Suche in Google Scholar
[11] B. Gerke, O. Janka, R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 2747.10.1002/zaac.201400334Suche in Google Scholar
[12] B. Gerke, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. in press. DOI: 10.1002/zaac.201600066.Suche in Google Scholar
[13] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor Fachzeitschrift1999, 43, 133.Suche in Google Scholar
[14] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar
[15] G. M. Sheldrick, Acta Crystallogr.1990, A46, 467.10.1107/S0108767390000277Suche in Google Scholar
[16] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar
[17] J. Emsley, The Elements, Oxford University Press, Oxford (U.K.) 1999.Suche in Google Scholar
[18] H. D. Flack, G. Bernadinelli, Acta Crystallogr. A1999, 55, 908.10.1107/S0108767399004262Suche in Google Scholar
[19] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.10.1107/S0021889800007184Suche in Google Scholar
[20] M. Johnscher, S. Stein, O. Niehaus, C. Benndorf, L. Heletta, M. Kersting, C. Höting, H. Eckert, R. Pöttgen, Solid State Sci. 2016, 52, 57.10.1016/j.solidstatesciences.2015.12.004Suche in Google Scholar
[21] A. Iandelli, J. Alloys Compd. 1992, 182, 87.10.1016/0925-8388(92)90577-VSuche in Google Scholar
[22] S. K. Dhar, R. Kulkarni, P. Manfrinetti, M. Pani, Y. Yonezawa, Y. Aoki, Phys. Rev. B2007, 76, 054411.10.1103/PhysRevB.76.054411Suche in Google Scholar
[23] T. Mishra, W. Hermes, T. Harmening, M. Eul, R. Pöttgen, J. Solid State Chem. 2009, 182, 2417.10.1016/j.jssc.2009.06.034Suche in Google Scholar
[24] W. Hermes, R. Mishra, H. Müller, D. Johrendt, R. Pöttgen, Z. Anorg. Allg. Chem. 2009, 635, 660.10.1002/zaac.200900054Suche in Google Scholar
[25] T. Mishra, G. Heymann, H. Huppertz, R. Pöttgen, Intermetallics2012, 20, 110.10.1016/j.intermet.2011.08.012Suche in Google Scholar
[26] R.-D. Hoffmann, T. Mishra, B. Heying, U. Ch. Rodewald, S. F. Matar, H. Deters, H. Eckert, R. Pöttgen, Z. Anorg. Allg. Chem. 2013, 639, 246.10.1002/zaac.201200200Suche in Google Scholar
[27] T. Mishra, C. Schwickert, R. Pöttgen, Monatsh. Chem. 2011, 142, 973.10.1007/s00706-011-0569-4Suche in Google Scholar
[28] N. Gross, G. Block, W. Jeitschko, Chem. Mater. 2002, 14, 2725.10.1021/cm021112nSuche in Google Scholar
[29] W. Hermes, S. Linsinger, R. Mishra, R. Pöttgen, Monatsh. Chem. 2008, 139, 1143.10.1007/s00706-008-0914-4Suche in Google Scholar
[30] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1958, 11, 184.10.1107/S0365110X58000487Suche in Google Scholar
[31] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1959, 12, 483.10.1107/S0365110X59001499Suche in Google Scholar
[32] H. Bärnighausen, Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar
[33] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Suche in Google Scholar
[34] U. Müller, Relating crystal structures by group-subgroup relations. in International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, (Eds. H. Wondratschek and U. Müller) John Wiley & sons, Ltd, 2nd Ed., Chichester, p. 44, 2010.10.1107/97809553602060000795Suche in Google Scholar
[35] U. Müller, Symmetriebeziehungen Zwischen Verwandten Kristallstrukturen, Vieweg + Teubner Verlag, Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar
[36] A. T. Aldred, Trans. Metall. Soc. AIME1962, 224, 1082.Suche in Google Scholar
[37] O. Loebich Jr., E. Raub, J. Less- Common. Met. 1973, 30, 47.10.1016/0022-5088(73)90006-4Suche in Google Scholar
[38] A. Palenzona, S. Cirafici, Thermochim. Acta.1975, 12, 267.10.1016/0040-6031(75)85039-8Suche in Google Scholar
[39] A. Iandelli, A. Palenzona, Rev. Chim. Miner. 1973, 10, 303.Suche in Google Scholar
[40] E. Laube, H. Nowotny, Monatsh. Chem. 1963, 94, 162.10.1007/BF00900232Suche in Google Scholar
[41] G. Bruzzone, A. F. Ruggiero, G. B. Bonino, Atti. Accad. Naz. Lincei., Cl. Sci. Fis., Mat. Nat., Rend.1962, 33, 312.Suche in Google Scholar
[42] A. Iandelli, E. Botti, Gazz. Chim. Ital. 1937, 67, 638.Suche in Google Scholar
[43] A. Iandelli, S. L. Rolla, Atti. Accad. Naz. Lincei., Cl. Sci. Fis., Mat. Nat., Rend. 1960, 29, 62.Suche in Google Scholar
[44] A. Iandelli, A. Palenzona, G. B. Bonino, Atti. Accad. Naz. Lincei., Cl. Sci. Fis., Mat. Nat., Rend.1964, 37, 165.Suche in Google Scholar
[45] C. C. Chao, H. L. Luo, P. E. Duwez, J. Appl. Phys. 1964, 35, 257.10.1063/1.1713089Suche in Google Scholar
[46] J. W. Cable, W. C. Koehler, E. O. Wollan, Phys. Rev.1964, 136, A240.10.1103/PhysRev.136.A240Suche in Google Scholar
[47] E. Laube, J. B. Kusma, Monatsh. Chem. 1964, 95, 1504.10.1007/BF00901705Suche in Google Scholar
[48] A. Iandelli, A. Palenzona, J. Less-Common. Met. 1965, 9, 1.10.1016/0022-5088(65)90028-7Suche in Google Scholar
[49] Fr. Heusler, W. Starck, E. Haupt, Verh. Dtsch. Phys. Ges. 1903, 5, 220.Suche in Google Scholar
[50] U. Eberz, W. Seelentag, H. U. Schuster, Z. Naturforsch. 1980, 35b, 1341.10.1515/znb-1980-1103Suche in Google Scholar
[51] V. V. Pavlyuk, O. I. Bodak, G. S. Dmytriv, Ukr. Khim. Zh. 1992, 58, 735.Suche in Google Scholar
[52] J. Donohue, The Structures of the Elements, Wiley, New York (U.S.A.), 1974.Suche in Google Scholar
[53] Yu. Verbovytskyy, D. Kaczorowski, A. P. Gonçalves, Intermetallics2011, 19, 613.10.1016/j.intermet.2010.12.011Suche in Google Scholar
[54] M. Friedrich, A Ormeci, Yu. Grin, M. Armbrüster, Z. Anorg. Allg. Chem. 2010, 636, 1735.10.1002/zaac.201000097Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
 - Graphical Synopsis
 - Inorganic Crystal Structures
 - The crystal structure of a fluorine-dominant titanium calcium amphibole from the Eifel paleovolcanic area, Germany
 - RE13Pd25+xZn28–x (RE = Y, Ho–Lu) – A 4 × 4 × 4 tungsten superstructure with short Pd/Zn dumbbells as structural motif
 - Organic and Metalorganic Crystal Structures
 - Bis[bis(N-2-hydroxyethyl,N-isopropyl-dithiocarbamato)mercury(II)]2: crystal structure and Hirshfeld surface analysis
 - Structural, Hirshfeld surface and theoretical analysis of two conformational polymorphs of N,N′-bis(pyridin-3-ylmethyl)oxalamide
 - Superspace description of trimethyltin hydroxide at T = 100 K
 - Halogen and hydrogen bonding in cis-dichlorobis(propionitrile)platinum(II) chloroform monosolvate
 - Synthesis and structural phase transitions of [Mg2Sb2(C4H2O6)2(H2O)8](ClO4)2·5H2O with complex homochiral chains
 
Artikel in diesem Heft
- Frontmatter
 - Graphical Synopsis
 - Inorganic Crystal Structures
 - The crystal structure of a fluorine-dominant titanium calcium amphibole from the Eifel paleovolcanic area, Germany
 - RE13Pd25+xZn28–x (RE = Y, Ho–Lu) – A 4 × 4 × 4 tungsten superstructure with short Pd/Zn dumbbells as structural motif
 - Organic and Metalorganic Crystal Structures
 - Bis[bis(N-2-hydroxyethyl,N-isopropyl-dithiocarbamato)mercury(II)]2: crystal structure and Hirshfeld surface analysis
 - Structural, Hirshfeld surface and theoretical analysis of two conformational polymorphs of N,N′-bis(pyridin-3-ylmethyl)oxalamide
 - Superspace description of trimethyltin hydroxide at T = 100 K
 - Halogen and hydrogen bonding in cis-dichlorobis(propionitrile)platinum(II) chloroform monosolvate
 - Synthesis and structural phase transitions of [Mg2Sb2(C4H2O6)2(H2O)8](ClO4)2·5H2O with complex homochiral chains