Home Crystal structure of the alluaudite Ag2Mn3(VO4)3
Article
Licensed
Unlicensed Requires Authentication

Crystal structure of the alluaudite Ag2Mn3(VO4)3

  • Hamdi Ben Yahia EMAIL logo , Masahiro Shikano EMAIL logo , Rachid Essehli and Ilias Belharouak
Published/Copyright: March 17, 2016

Abstract

The new compound Ag2Mn3(VO4)3 was synthesized by hydrothermal and solid state reaction routes, and its crystal structure was determined from single-crystal X-ray diffraction data. Ag2Mn3(VO4)3 crystallizes with a monoclinic symmetry, space group C2/c, with a=11.8968(11) Å, b=13.2057(13) Å, c=6.8132(7) Å, β=111.3166(15) (°) and V=997.16(17) Å3 (Z=4). Its crystal refinement yielded the residual factors R(F)=0.0249 and wR(F2)=0.0704 for 95 parameters and 1029 independent reflections at a 3σ(I) level. Ag2Mn3(VO4)3 can be considered as a new member of the AAMM2(XO4)3 alluaudite family. The specific arrangement of M and M′ octahedral sites and of X tetrahedral sites gives rise to two different channels aligned along the crystallographic c-axis and containing the A and A′ sites. The A, A′, M, and X sites are fully occupied by Ag+, Mn2+, and V5+, respectively; whereas a Mn2+/Mn3+ mixture is observed in the M′ site.


Corresponding authors: Hamdi Ben Yahia, Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha, Qatar, E-mail: ; and Masahiro Shikano, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan, E-mail:

Acknowledgments:

Part of this work was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for JSPS Fellows Grant Number 24·02506.

References

[1] D. J. Fisher, Alluaudite. Am. Mineral.1955, 40, 1100.10.1016/0002-9394(55)91127-2Search in Google Scholar

[2] P. B. Moore, Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. Am. Mineral.1971, 56, 1955.Search in Google Scholar

[3] V. Dietrich, D. Pitzschke, M. Jansen, Crystal structure of silver thallium phosphate, Ag3Tl2(PO4)3. Z. Kristallogr. NCS2011, 226, 7.10.1524/ncrs.2011.0004Search in Google Scholar

[4] M. A. Strelkov, M. G. Zhizhin, L. N. Komissarova, Synthesis and crystal structure of three silver indium double phosphates. J. Solid State Chem.2006, 179, 3664.10.1016/j.jssc.2006.07.044Search in Google Scholar

[5] N. Chouaibi, A. Daidouh, C. Pico, A. Santrich, M. L. Veiga, Neutron diffraction, mössbauer spectrum, and magnetic behavior of Ag2FeMn2(PO4)3 with alluaudite-like structure. J. Solid State Chem.2001, 159, 46.10.1006/jssc.2001.9128Search in Google Scholar

[6] A. Daidouh, C. Durio, C. Pico, M. L. Veiga, N. Chouaibi, A. Ouassini, Structural and electrical study of the alluaudites (Ag1-xNax)2FeMn2(PO4)3 (x=0, 0.5 and 1). Solid State Sci.2002, 4, 541.10.1016/S1293-2558(02)01289-XSearch in Google Scholar

[7] M. Kacimi, M. Ziyad, F. Hatert, Structural features of AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion. Mater. Res. Bull.2005, 40, 682.10.1016/j.materresbull.2004.12.009Search in Google Scholar

[8] F. Leroux, A. Mar, D. Guyomard, Y. Piffard, Cation substitution in the alluaudite structure type: synthesis and structure of AgMn3(PO4)(HPO4)2. J. Solid State Chem.1995, 117, 206.10.1006/jssc.1995.1264Search in Google Scholar

[9] A. Guesmi, A. Driss, AgCo3PO4(HPO4)2. Acta Cryst.2002, C58, i16.10.1107/S0108270101017759Search in Google Scholar

[10] R. Ben Smail, T. Jouini, AgNi3(PO4)(HPO4)2: an alluaudite-like structure. Acta Cryst.2002, C58, i61.10.1107/S0108270102003153Search in Google Scholar

[11] A. Assani, M. Saadi, M. Zriouil, L. El Ammari, Silver trimagnesium phosphate bis(hydrogenphosphate), AgMg3(PO4)(HPO4)2, with an alluaudite-like structure. Acta Cryst.2011, E67, i5.10.1107/S1600536810053304Search in Google Scholar

[12] N. Stock, T. Bein, High-throughput investigation in the synthesis of the alluaudite-type manganese arsenate: AgMn3(AsO4)(HAsO4)2. Solid State Sci.2003, 5, 1207.10.1016/S1293-2558(03)00157-2Search in Google Scholar

[13] P. Keller, H. Riffel, F. Zettler, H. Hess, AgCo3H2(AsO4)3 und AgZn3H2(AsO4)3 Darstellung und Kristallstruktur Ein weiterer neuer Arsenat-Strukturtyp. Zeitschrift fuer Anorganische und Allgemeine Chemie1981, 474, 123.10.1002/zaac.19814740313Search in Google Scholar

[14] A. Brahimi, H. Amor, Ag1.49Mn1.49IIMn1.51III(AsO4)3. Acta Cryst.2003, E59, i77.10.1107/S1600536803005816Search in Google Scholar

[15] M. Hellenbrandt, The Inorganic Crystal Structure Database (ICSD)—Present and Future. Crystallography Reviews2004, 10, 17.10.1080/08893110410001664882Search in Google Scholar

[16] V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[17] M. C. Burla, M. Camalli, B. Carrozzini, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna, SIR2002: the program. J. Appl. Cryst.2003, 36, 1103.10.1107/S0021889803012585Search in Google Scholar

[18] O. V. Yakubovich, M. A. Simonov, Y. K. Egorov Tismenko, N. V. Belov, Crystalline structure of Na2(Fe0.53+Fe0.5)2Fe2+[PO4]3 a synthetic variety of alluaudite. Dokl. Akad. Nauk SSSR1977, 236, 1123.Search in Google Scholar

[19] I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr.1985, B41, 244.10.1107/S0108768185002063Search in Google Scholar

[20] N. E. Brese, M. O’Keefe, Bond-valence parameters for solids. Acta Crystallogr.1991, B47, 192.10.1107/S0108768190011041Search in Google Scholar

[21] F. Hatert, L. Rebbouh, R. P. Hermann, A. M. Fransolet, G. J. Long, F. Grandjean, Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFe2+x)2Fe3+(PO4)3 alluaudite-type solid solution. Am. Mineral.2005, 90, 653.10.2138/am.2005.1551Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2016-1930) offers supplementary material, available to authorized users.


Received: 2016-2-1
Accepted: 2016-2-15
Published Online: 2016-3-17
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1930/html
Scroll to top button