Home Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3
Article
Licensed
Unlicensed Requires Authentication

Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3

  • Olga Nikulina EMAIL logo , Dmitriy Yatsenko , Olga Bulavchenko , Galina Zenkovets and Sergey Tsybulya
Published/Copyright: February 6, 2016

Abstract

The metastable nanocrystalline γ-Ga2O3 with the particles’ dimensions about 2 nm was prepared by coprecipitation method and its structure was studied using X-ray powder diffraction. The corresponding diffraction pattern is characterized by a strong broadening of diffraction peaks. The Debye function analysis method (DFA) was applied to calculate the full profile of the XRD pattern for the first time. Earlier reported structural models of the γ-Ga2O3 were examined with respect to experimental diffraction data. The influence of crystallite sizes on the diffraction pattern was considered. The obtained structure of the disordered γ-Ga2O3 has vacancies in 8a and 16d spinel positions and additional atoms in 8b, 16c and 48f non-spinel positions. The proposed structure differs from those reported by the ratio between occupancies of the tetrahedral and octahedral gallium positions.


Corresponding author: Olga Nikulina, Novosibirsk State University, Pirogova Str. 2, Novosibirsk, Russia, 630090; and Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, Russia, 630090, E-mail:

Acknowledgments

The authors gratefully acknowledge the financial support from the Russian Science Foundation (project 14-23-00037). We also thank E.J. Gerasimov for the TEM data.

References

[1] C. O. Arean, A. L. Bellan, M. P. Mentruit, M. R. Delgado, G. T. Palomino, Microporous Mesoporous Mater.2000, 40, 35.10.1016/S1387-1811(00)00240-7Search in Google Scholar

[2] Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, X. Fu, J. Catal.2007, 250, 12.10.1016/j.jcat.2007.05.012Search in Google Scholar

[3] W. -S. Jung, Bull. Korean Chem. Soc.2004, 25, 51.10.5012/bkcs.2004.25.1.051Search in Google Scholar

[4] M. Yada, M. Ohya, M. Machida, T. Kijima, Langmuir.2000, 16, 4752.10.1021/la991628uSearch in Google Scholar

[5] W.- S. Jung, C. S. Ra, B.-K. Min, Bull. Korean Chem. Soc.2005, 26, 131.10.1007/s11814-009-0020-2Search in Google Scholar

[6] W. Lueangchaichaweng, N. R. Brooks, S. Fiorilli, E. Gobechiya, K. Lin, L. Li, S. Parres-Esclapez, E. Javon, S. Bals, G. V. Tendeloo, J. A. Martens, C. E. A. Kirschhock, P. A. Jacobs, P. P. Pescarmona, Angew. Chem. Int. Ed.2014, 53, 1585.10.1002/anie.201308384Search in Google Scholar PubMed

[7] H. Seshadri, M. Cheralathan, P. K. Sinha, Res. Chem. Intermed.2013, 39, 991.10.1007/s11164-012-0610-1Search in Google Scholar

[8] S. E. Collins, L. E. Briand, L. A. Gambaro, M. A. Baltanas, A. L. Bonivardi, J. Phys. Chem. C.2008, 112, 14988.10.1021/jp801252dSearch in Google Scholar

[9] T. Chen, K. Tang, Appl. Phys. Lett.2007, 90, 053104.10.1063/1.2437110Search in Google Scholar

[10] H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, I. Tanaka, Appl. Phys. Lett.2006, 89, 181903.10.1063/1.2369541Search in Google Scholar

[11] H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J.2013, 19, 2803.10.1002/chem.201203359Search in Google Scholar PubMed

[12] H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, R. I. Walton, J. Phys. Chem. C.2014, 118, 16188.10.1021/jp5033806Search in Google Scholar

[13] K. Pohl, Naturwiss.1968, 55, 82.10.1007/BF00599490Search in Google Scholar

[14] M. Zinkevich, F. M. Morales, H. Nitsche, M. Ahrens, M. Ruhle, F. Aldinger, Z. Metallkd.2004, 95, 756.10.3139/146.018018Search in Google Scholar

[15] J. Bohm, Angew. Chem.1940, 63, 131.Search in Google Scholar

[16] S. V. Tsybulya, S. V. Cherepanova, L. P. Soloviyova, J. Struct. Chem.1996, 37, 332.10.1007/BF02591064Search in Google Scholar

[17] T. H. Proffen, R. B. Neder, J. Appl. Cryst.1997, 30, 171.10.1107/S002188989600934XSearch in Google Scholar

[18] B. D. Hall, J. Appl. Phys.2000, 87, 1666.10.1063/1.372075Search in Google Scholar

[19] A. Cervellino, C. Giannini, A. Guagliardi, J. Appl. Cryst.2003, 36, 1148.10.1107/S0021889803013542Search in Google Scholar

[20] P. Debye, Ann. Physik.1915, 351, 809.10.1002/andp.19153510606Search in Google Scholar

[21] S. V. Tsybulya, D. A. Yatsenko, J. Struct. Chem.2012, 53, S150.10.1134/S002247661207013XSearch in Google Scholar

[22] D. A. Yatsenko, S. V. Tsybulya, Bull. Russ. Acad. Sci.: Phys.2012, 76, 382.10.3103/S1062873812030410Search in Google Scholar

[23] Powder Diffraction File. Release 2012. PDF# 04-015-6251.Search in Google Scholar

[24] P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.1918, 1918, 98.Search in Google Scholar

[25] J. I. Langford, A. J. C. Wilson, J. Appl. Cryst.1978, 11, 102.10.1107/S0021889878012844Search in Google Scholar

[26] S. V. Tsybulya, G. N. Kryukova, Phys. Rev. B.2008, 77, 024112.10.1103/PhysRevB.77.024112Search in Google Scholar

Received: 2015-7-14
Accepted: 2016-1-14
Published Online: 2016-2-6
Published in Print: 2016-5-1

©2016 by De Gruyter

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2015-1895/html
Scroll to top button