Crystal structures of (E)-2-((2-((pyridin-2-yl)hydrazonyl)methyl)phenolic compounds: different sets of classical hydrogen bonds, X–H···Y (X, Y = O, N)
-
Nathasha R. de L. Correira
and Solange M.S.V. Wardell
Abstract
Structures are reported of (E)-((2-((pyridin-2-yl)hydrazonyl)methyl)arene compounds, 2-aryl-CH=N–CH)-pyridine, 8, namely (aryl=2,4-(HO)2C6H3, 8a; 2,5-(HO)2C6H3, 8b, 2–HOC6H4, 8c, as the hemihydrate, [(8c)2·(H2O)], 2–HO–5–O2NC6H3, 8d; and 2,6-(MeO)2C6H3, 8e. Intramolecular O1–H1··· N2(hydrazonyl) hydrogen bonds are consistantly found in each of the hydroxy compounds, 8a–8d. However, a diverse array of classical intermolecular hydrogen bonds, X–H···Y (X or Y = O or N) are found in 8a–8e. Classical intermolecular hydrogen bonds in 8a are chain forming N3–HN3···O1 and O2–H2···N1(pyridinyl) intermolecular hydrogen bonds, while in the isomer, 8b, dimer forming N3–HN3···N1(pyridinyl) and chain forming O2–H2···O1(pyridinyl) hydrogen bonds are present. The hydrate molecule in [(8c)2·(H2O)] is involved in Ow–Hw···N1 intermolecular hydrogen bonding: also present in [(8c)2·(H2O)] are chain forming N3–HN3···O2 bonds. The only intermolecular classical hydrogen bonds present in 8d and 8e, are the dimer forming N3–HN3···N1(pyridinyl) bonds. Thus only compounds, 8b, 8d and 8e, exhibit dimer forming N3–HN3···N1(pyridinyl) hydrogen bonds, previously reported fora range of (aryl-CH=N–CH)-pyridine derivatives. The occurence of N3–HN3···N1(pyridinyl) hydrogen bonds in many (aryl-CH=N–CH)-pyridine derivatives demonstrates the importance of such hydrogen bonds. However, as found in 8a and [(8c)2·(H2O)], suitable sited donor substituents or the presence of solvate molecules can result in other classical hydrogen bonds being preferred.
Acknowledgments
The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JLW thanks FAPERJ and CNPq, Brazil for support.
References
[1] M. Singh, N. Raghav, Biological activities of hydrazones: a review. Int. J. Pharm. Pharm. Sci. 2011, 3, 26.Search in Google Scholar
[2] K. Padmini, P. J. Preethi, M. Divya, P. Rohini, M. Lohita, K. Swetha, P. K. Sree, A Review on biological importance of hydrazones. Int. J. Pharma Res. Rev.2013, 2, 43.Search in Google Scholar
[3] G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. Rahmat Ali, M. M. Alam, A review exploring biological activity of hydrazones. J. Pharm. Bioallied. Sci.2014, 6, 69.10.4103/0975-7406.129170Search in Google Scholar PubMed PubMed Central
[4] R. Kaplánek, M. Havlík, B. Dolenský, J. Rak, P. Džubák, P. Konečný, M. Hajdúch, J. Králová, V. Král, Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg. Med. Chem.2015, 23, 1651.10.1016/j.bmc.2015.01.029Search in Google Scholar PubMed
[5] S. Rollas, Ş. G. Küçükgüzel, Review. Biological activities of hydrazone derivatives. Molecules2007, 12, 1910.10.3390/12081910Search in Google Scholar PubMed PubMed Central
[6] R. A. Howie, M. V. N. de Souza, M. L. Ferreira, C. R. Kaiser, J. L. Wardell, S. M. S. V. Wardell, Structures of arylaldehyde 7-chloroquinoline-4-hydrazones:supramolecular arrangements derived from N–H···N, C–H···X (X = N, O, or π) and π···π interactions. Z. Kristallogr2010, 225, 440, and refs therein.10.1524/zkri.2010.1291Search in Google Scholar
[7] M. de L. F. Bispo, C. C. de Alcantara, M. O. de Moraes, C. do O. Pessoa, F. A. R. Rodrigues, C. R. Kaiser, S. M. S. V. Wardell, J. L. Wardell, M. V. N. de Souza, A new and potent class of quinoline derivatives against cancer. Monatsh Chem. 2015, 146, 2041.10.1007/s00706-015-1570-0Search in Google Scholar
[8] E. R. T. Tiekink, S. M. S. V. Wardell, J. L. Wardell, M. L. Ferreira, M. V. N. de Souza, C. R. Kaiser, 4-[(E)-2-(2-Chlorobenzylidene)hydrazin-1-yl]quinolin-1-ium chloride dihydrate. Acta Crystallogr. 2012, E68, o1850.10.1107/S1600536812022660Search in Google Scholar PubMed PubMed Central
[9] M. L. F. de Bispo, C. C. de Alcantara, S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, Structures of three methoxy-substituted benzaldehyde 7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazones: variations in π···π. Z. Kristallogr.2015, 230, 519.10.1515/zkri-2015-1848Search in Google Scholar
[10] M. de L. F. Bispo, C. C. de Alcantara, S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, Structures of benzaldehyde (E,E)-7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives: variations in intermolecular interactions, especially π···π interactions. Z Kristallogr. Paper no.zkri-15-1893.Search in Google Scholar
[11] M. V. N. de Souza, T. C. M. Noguiera, S. M. S. V. Wardell, J. L. Wardell, Crystal structures of (E)-2-(2-benzylidenehydrazinyl) quinoxalines: persistent N-H···N intermolecular hydrogen bonds but variable π···π interactions. Z. Kristallogr. 2014, 229, 587.10.1515/zkri-2014-1769Search in Google Scholar
[12] L. R. Gomes, J. N. Low, A. S. M. C. Rodrigues, J. L. Wardell, M. V. N. de Souza, T. C. M. Noguiera, A. C. Pinheiro, Comparison of the structure of (E)-2-(2-benzylidene)-hydrazinylidene)quinoxaline with those of its chloro- and bromobenzylidene analogues. Acta Crystallogr. 2013, C69, 920.10.1107/S0108270113015370Search in Google Scholar
[13] F. A. R. Rodrigues, I. S. Bomfim, B. C. Cavalcanti, C. O. Pessoa, J. L. Wardell, S. M. S. V. Wardell, A. C. Pinheiro, C. R. Kaiser, T. C. M. Nogueira, J. N. Low, L. R. Gomes, M. V. N. de Souza, Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl) quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Lett.2014, 24, 934.10.1016/j.bmcl.2013.12.074Search in Google Scholar PubMed
[14] E. B. Lindgren, J. D. Yoneda, K. Z. Leal, A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Structures of hydrazones, (E)-2-(1,3-benzothiazolyl)-NH-N = CHAr, [Ar = 4-(pyridin-2-yl)phenyl, pyrrol-2-yl, thien-2-yl and furan-2-yl]: Difference in conformations and intermolecular hydrogen bonding. J. Mol. Struct. 2013, 1036, 19.10.1016/j.molstruc.2012.09.058Search in Google Scholar
[15] A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Crystal structures of hydrazones, 2-(1,3-benzothiazolyl)-NH-N = CH-Ar, prepared from arenealdehydes and 2-hydrazinyl-1,3-benzodiazole. Z. Kristallogr.2011, 226, 846.10.1524/zkri.2011.1424Search in Google Scholar
[16] S. A. Carvalho, W. T. A. Harrison, C. A. M. Fraga, E. F. da Silva, J. L. Wardell, S. M. S. V. Wardell, 5-Phenyl-2-(benzalhydrazonyl)-1,3,4-thiadiazoles, potential trypanocidal agents: consistent dimer formation via N–H···N intermolecular hydrogen bonds. Z. Kristallogr.2009, 224, 598.10.1524/zkri.2009.1203Search in Google Scholar
[17] G. M. de Lima, J. L. Wardell, R. A. Howie, S. M. S. V. Wardell, Structures of protonated bis(pyridine-2-yl) ketone arylhydrazone derivatives: [(C5H4N)(C5H4NH)C = NNHC6 H4Y] [X] (Y,X = 3-O2N,Cl: 4-Me,Cl). J. Chem. Crystallogr. 2013, 43, 36.10.1007/s10870-012-0384-8Search in Google Scholar
[18] A. Sarkar, S. Pal, Some ternary complexes of oxovanadium(IV) with acetylacetone and N-(2-pyridyl)-N′-(salicylidene)hydrazine and its derivatives. Polyhedron,2006, 25, 1689.10.1016/j.poly.2005.11.009Search in Google Scholar
[19] M. Mohan, N. S. Gupta, L. Chandra, N. K. Jha, Synthesis, characterization and antitumor properties of some metal complexes of 3- and 5-substituted salicylaldehyde 2-pyridinylhydrazones. J Inorg Biochem.1987, 31, 7.10.1016/0162-0134(87)85002-XSearch in Google Scholar
[20] Y. Álvarez-Casao, D. Monge, E. Álvarez, R. Fernández, J. M. Lassaletta, Pyridine–hydrazones as N,N′-ligands in asymmetric catalysis: Pd(II)-catalyzed addition of boronic acids to cyclic sulfonylketimines. Org. Lett.2015, 17, 5104.10.1021/acs.orglett.5b02613Search in Google Scholar PubMed
[21] X. Su, I. Prahamian, Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev.2014, 43, 1963.10.1039/c3cs60385gSearch in Google Scholar PubMed
[22] K. Li, A. Tong, A new fluorescent chemosensor for Zn2+ with facile synthesis: “Turn-on” response in water at neutral pH and its application for live cell imaging. Sensors and actuators: B Chemical.2013, 184, 248.10.1016/j.snb.2013.04.083Search in Google Scholar
[23] O. G. Tsay, S. T. Manjare, H. Kim, K. M. Lee, Y. S. Lee, D. G. Churchill, Novel Reversible Zn2+-assisted biological phosphate “turn-on” probing through stable aryl-hydrazone salicylaldimine conjugation that attenuates ligand hydrolysis. Inorg. Chem.2013, 52, 10052.10.1021/ic4013526Search in Google Scholar PubMed
[24] Z. Li, J. Qiao, Z. Jia, S. Meng, Synthesis of the pyridine hydrazones as metal-free artificial nucleases. Chem. Lett.2015, 44, 1243.10.1246/cl.150428Search in Google Scholar
[25] T. Tunç, H. Tezcan, E. Şahin, N. Dilek, Synthesis, Crystal structure, and spectroscopic studies of N-(4-Bromobenzylidene)-N′-(2-pyridyl) hydrazine Schiff base molecule. Mol. Cryst. Liq. Cryst.2012, 552, 194.10.1080/15421406.2011.591702Search in Google Scholar
[26] H. Yuvaraj, S. Sundaramoorthy, D. Velmurugan, R. G. Kalkhambkar, (Z)-2-[2-(4-Methylbenzylidene)hydrazinyl]pyridine. Acta Crystallogr.2011, E67, o178.10.1107/S1600536810052372Search in Google Scholar
[27] T. Tunc, M. Sari, R. Yagbasan, H. Tezcan, E. Sahin, N-(4-Methoxybenzylidene)-N′-(2-pyridyl)hydrazine. Acta Crystallogr.2003, C59, o-192.10.1107/S0108270103004256Search in Google Scholar
[28] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.10.1002/anie.199515551Search in Google Scholar
[29] R. W. W. Hooft, COLLECT, Data Collection Software. (Ed. B. V. Nonius) Delft, The Netherlands, 1998.Search in Google Scholar
[30] Z. Otwinowski, W. Minor, Jr., Processing of X-ray diffraction data collected in oscillation mode, Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, (Eds. C. W. Carter and R. M Sweet) Academic Press, New York, p. 307–326, 1997.10.1016/S0076-6879(97)76066-XSearch in Google Scholar
[31] G. M. Sheldrick, SADABS Version 2007/2, Bruker AXS Inc., Madison, WI, 2007.Search in Google Scholar
[32] MERCURY 3.3.1 Cambridge Crystallographic Data Centre, UK.Search in Google Scholar
[33] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7.10.1107/S0021889802022112Search in Google Scholar
[34] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[35] G. R. Desiraju, Crystal engineering: a holistic view. Angew. Chem., Int. Ed.2007, 46, 8342.10.1002/anie.200700534Search in Google Scholar PubMed
[36] E. R. T. Tiekink, Crystal engineering, in Supramolecular Chemistry: from Molecules to Nanomaterials, (Eds. J. W. Steed and P. A. Gale) John Wiley & Sons Ltd, Chichester, UK, p. 2791, 2012.Search in Google Scholar
[37] L. Huang, L. Massa, J. Karle, Calculated interactions of a nitro group with aromatic rings of crystalline picryl bromide. Proc. Natl. Acad. Sci. 2008, 105, 13720.10.1073/pnas.0807218105Search in Google Scholar PubMed PubMed Central
[38] C. Janiak, A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885.10.1039/b003010oSearch in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2015-1910) offers supplementary material, available to authorized users.
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- β-K2Se2 and K2Se4: missing links in the binary system K-Se
- Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3
- Crystal structure of the alluaudite Ag2Mn3(VO4)3
- Organic and Metalorganic Crystal Structures
- Crystal structures of (E)-2-((2-((pyridin-2-yl)hydrazonyl)methyl)phenolic compounds: different sets of classical hydrogen bonds, X–H···Y (X, Y = O, N)
- Syntheses, crystal structures and thermal properties of two novel isostructural Co(III) complexes with salophen ligand
- Crystal structures and vibrational spectra of biuret co-crystals with cyanuric and glutaric acids, discussion of hydrogen bonding involving carbonyl groups
- Crystallographic Computing
- Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006
- Corrigendum
- Corrigendum to: Disorder, pseudo symmetry and photoluminescence properties of a new diphosphate K2Ba3(P2O7)2
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- β-K2Se2 and K2Se4: missing links in the binary system K-Se
- Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3
- Crystal structure of the alluaudite Ag2Mn3(VO4)3
- Organic and Metalorganic Crystal Structures
- Crystal structures of (E)-2-((2-((pyridin-2-yl)hydrazonyl)methyl)phenolic compounds: different sets of classical hydrogen bonds, X–H···Y (X, Y = O, N)
- Syntheses, crystal structures and thermal properties of two novel isostructural Co(III) complexes with salophen ligand
- Crystal structures and vibrational spectra of biuret co-crystals with cyanuric and glutaric acids, discussion of hydrogen bonding involving carbonyl groups
- Crystallographic Computing
- Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006
- Corrigendum
- Corrigendum to: Disorder, pseudo symmetry and photoluminescence properties of a new diphosphate K2Ba3(P2O7)2