Abstract
The pyroelectric effect of four isomorphic monoclinic (space group Cc), non-ferroelectric rare earth nitrates A2Ln(NO3)5·4H2O (A = NH4, Rb; Ln = La, Ce) was investigated in the temperature range between 100 K and 300 K, using a home-made continuous-flow cryostat for measurements of pyroelectric currents. The symmetry-allowed temperature-dependent change of orientation of the pyroelectric vector p within the mirror plane is unusually large, showing a rotation of p of 148°, 129°, 36° and 40° for (NH4)2La(NO3)5·4H2O, (NH4)2Ce(NO3)5·4H2O, Rb2La(NO3)5·4H2O and Rb2Ce(NO3)5·4H2O, respectively, while changing the temperature from 100 K to 300 K in each case. The pyroelectric coefficients are up to ten times larger than p3 of tourmaline. In addition, new data of the pyroelectric coefficients of Li2SO4·H2O and BiB3O6 and their temperature dependence are given.
Dedicated to the memory of Siegfried Haussühl who passed away on January 7th, 2014.
Acknowledgments
The authors thank Professor Dr. H. Pentinghaus for the supply of RbNO3. This work was partly supported by the DFG through SFB 608.
References
[1] A. G. Vigdorchik, Y. A. Malinovskii, A. G. Dryuchko, V. B. Kalinin, I. A. Verin, S. Y. Stefanovich, Synthesis and X-ray stuctural investigation of rubidium rare-earth nitrates Rb2[Ln(NO3)5(H2O)2]·2H2O, where Ln = La, Ce. Sov. Phys. Crystallogr.1992, 37, 783.Search in Google Scholar
[2] N. Audebrand, J. P. Auffrédic, M. Louër,Temperature-dependent X-ray diffraction and crystal structure of CeRb2(NO3)5·4H2O. Solid State Ionics.1996, 84, 323.10.1016/0167-2738(96)00082-3Search in Google Scholar
[3] L. Bohatý, P. Held, P. Becker, Non-centrosymmetric rubidium rare-earth nitrates Rb2RE(NO3)5·4H2O: Crystal growth and optical properties. Z. Anorg. Allg. Chem.2009, 636, 2236.10.1002/zaac.200801395Search in Google Scholar
[4] L. Bohatý, R. Fröhlich, P. Held, P. Becker, Non-centrosymmetric ammonium rare earth nitrates (NH4)2Ln(NO3)5·4H2O – Crystal structure, crystal growth and optical properties. Eur. J. Inorg. Chem.2010, 2642.10.1002/ejic.201000179Search in Google Scholar
[5] M. H. Dufet, Notices cristallographiques. Bull. Soc. Fr. Mineral. Crystallogr.1888, 11, 143.10.3406/bulmi.1888.3170Search in Google Scholar
[6] A. Fock, IV. Krystallographisch-chemische Untersuchungen. Z. Kristallogr.1894, 22, 29.10.1524/zkri.1894.22.1.29Search in Google Scholar
[7] E. H. Kraus, XXIII. Ueber einige Salze der seltenen Erden. Z. Kristallogr.1901, 34, 397.10.1524/zkri.1901.34.1.397Search in Google Scholar
[8] M. G. Wyrouboff, Sur les nitrates doubles des méaux alcalins et des terres de la cérite. Bull. Soc. Fr. Mineral. Crystallogr.1907, 30, 299.10.3406/bulmi.1907.2818Search in Google Scholar
[9] B. Eriksson, L. O. Larsson, L. Niinistö, The crystal and molecular structures of two hydrates of ammonium diaquapentanitratolanthanate(III). Acta Chem. Scand. Ser. A1982, 36, 465.10.3891/acta.chem.scand.36a-0465Search in Google Scholar
[10] G. Meyer, E. Manek, A. Reller, (NH4)2[Pr(NO3)5(H2O)2]·2H2O Kristallstruktur und thermisches Verhalten. Z. Anorg. Allg. Chem.1990, 591, 77.10.1002/zaac.19905910109Search in Google Scholar
[11] M. Najafpour, P. Starynowicz, Diammonium diaquapentanitratocerate(III) dihydrate. Acta Crystallogr. E2006, 62, i145.10.1107/S1600536806006593Search in Google Scholar
[12] L. Bohatý, P. Becker, Optical properties of non-centrosymmetric mixed crystals K2(La1-xCex)(NO3)5·2H2O (x = 0.0 – 1.0). Cryst. Res. Technol.2009, 44, 1131.10.1002/crat.200900474Search in Google Scholar
[13] H. Hellwig, S. Rühle, P. Held, L. Bohatý, Polar potassium rare earth nitrates K2[Re(NO3)5(H2O)2] (RE = La, Ce, Pr, and Nd). II. Linear and nonlinear optical properties. J. Appl. Crystallogr.2000, 33, 380.10.1107/S002188980000087XSearch in Google Scholar
[14] S. Fleck, A. Weiß, Pyroelectricity of benzene derivatives. II. Metanitrochlorbenzene, paranitrobenzonitrile, and parabromobenzonitrile. Z. Naturforschung1987, 42a, 645.10.1515/zna-1987-0622Search in Google Scholar
[15] A. Weiss, S. Fleck, Pyroelectricity of aromatic compounds. Ber. Bunsenges. Phys. Chem.1987, 91, 913.10.1002/bbpc.19870910919Search in Google Scholar
[16] S. Fleck, M. C. Böhm, A. Weiss, Dielectric and pyroelectric properties of ammonium hydrogen-DL-malate monohydrate, NH4(C4H5O5)·H2O. Z. Naturforschung1987, 42a, 57.10.1515/zna-1987-0110Search in Google Scholar
[17] U. Richter, S. Haussühl, Pyroelectric, dielectric, piezoelectric and electrooptic properties of monoclinic nitrilotriacetic acid N(CH2COOH)3 and orthorhombic X2Zr[N(CH2COO)3]2·2H2O (X = K, Rb, Cs). Cryst. Res. Technol.1987, 22, 539.10.1002/crat.2170220417Search in Google Scholar
[18] D. Berlincourt, W. R. Cook, M. E. Rander, Piezoelectric, dielectric, and pyroelectric constants of LiH3(SeO3)2. Acta Crystallogr.1963, 16, 163.10.1107/S0365110X63000426Search in Google Scholar
[19] L. A. Shuvalov, V. W. Anisimova, N. R. Ivanov, I. A. Velichko, Dielectric properties of lithium trideuteroselenite LiD3(SeO3)2. Sov. Phys. Crystallogr.1973, 17, 1096.Search in Google Scholar
[20] M. M. Maior, Yu. M. Vyochanskii, I. P. Prits, Sh. B. Molnar, L. A. Seikovskaya, V. Yu. Slivka, Pyroelectric properties of oblique cuts of an Sn2P2S6 crystal. Sov. Phys. Crystallogr.1990, 35, 767.Search in Google Scholar
[21] R. L. Byer, C. B. Roundy, Pyroelectric coefficient direct measurement technique and application to a NSEC response time detector. Ferroelectrics1972, 3, 333.10.1080/00150197208235326Search in Google Scholar
[22] H. Schneeberger, Pyroelektrische Eigenschaften nicht-ferroelektrischer Kristalle. PhD thesis, Ludwig-Maximilians-Universität München, 1992.Search in Google Scholar
[23] M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Classic Texts Series, Clarendon Press, Oxford, pp. 141–148, 2001.10.1093/acprof:oso/9780198507789.003.0016Search in Google Scholar
[24] M. Ackermann, D. Brüning, T. Lorenz, P. Becker, L. Bohatý, Thermodynamic properties of the new multiferroic material (NH4)2[FeCl5(H2O)]. New J. Phys.2013, 15, 123001.10.1088/1367-2630/15/12/123001Search in Google Scholar
[25] M. Ackermann, Thermodynamic properties of new multiferroic and linear magnetoelectric crystals. PhD thesis, Universität zu Köln, 2014.Search in Google Scholar
[26] W. Ackermann, Beobachtungen über Pyroelektrizität in ihrer Abhängigkeit von der Temperatur. Ann. Phys.1915, 46, 197.10.1002/andp.19153510203Search in Google Scholar
[27] V. V. Gladkii, I. S. Zheludev, Method and results of studying the pyroelectric properties of certain single crystals. Sov. Phys. Crystallogr.1965, 10, 50.Search in Google Scholar
[28] S. B. Lang, Pyroelectric coefficient of lithium sulfate monohydrate (4.2 -320 K). Phys. Rev. B1971, 4, 3603.10.1103/PhysRevB.4.3603Search in Google Scholar
[29] IEEE Standard on Piezoelectric Crystals ANSI/IEEE Std. 176–1987, IEEE Press, New York, 1987.Search in Google Scholar
[30] J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.Search in Google Scholar
[31] S. Haussühl, Physical Properties of Crystals, Wiley-VCH Verlag, Weinheim, 2007.10.1002/9783527621156Search in Google Scholar
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Crystal physics in Germany – The lifework of Siegfried Haussühl (*25th November 1927, †07th January 2014)
- Original Articles
- Pyroelectric properties of the monoclinic rare earth nitrates A2Ln(NO3)5·4H2O (A = NH4, Rb; Ln = La, Ce)
- Single crystals of guanidinium zinc sulfate, [C(NH2)3]2Zn(SO4)2 – growth, structure, vibrational spectroscopy and stimulated Raman scattering
- 3D printing of representation surfaces from tensor data of KH2PO4 and low-quartz utilizing the WinTensor software
- Elastic, thermoelastic and piezoelectric properties of 11 new bis(alkylammonium) and bis(polyalkylammonium) zirconium bis(nitrilotriacetates)
- Influence of the Bi 6s2 lone electron pair on elastic properties of monoclinic Bi4B2O9
- X-ray topographic study of the antiferroelectric phase transition and antiphase boundaries in copper formate tetrahydrate
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Crystal physics in Germany – The lifework of Siegfried Haussühl (*25th November 1927, †07th January 2014)
- Original Articles
- Pyroelectric properties of the monoclinic rare earth nitrates A2Ln(NO3)5·4H2O (A = NH4, Rb; Ln = La, Ce)
- Single crystals of guanidinium zinc sulfate, [C(NH2)3]2Zn(SO4)2 – growth, structure, vibrational spectroscopy and stimulated Raman scattering
- 3D printing of representation surfaces from tensor data of KH2PO4 and low-quartz utilizing the WinTensor software
- Elastic, thermoelastic and piezoelectric properties of 11 new bis(alkylammonium) and bis(polyalkylammonium) zirconium bis(nitrilotriacetates)
- Influence of the Bi 6s2 lone electron pair on elastic properties of monoclinic Bi4B2O9
- X-ray topographic study of the antiferroelectric phase transition and antiphase boundaries in copper formate tetrahydrate