Home On the relationship between unit cells and channel systems in high silica zeolites with the “butterfly” projection
Article
Licensed
Unlicensed Requires Authentication

On the relationship between unit cells and channel systems in high silica zeolites with the “butterfly” projection

  • Peng Guo , Wei Wan EMAIL logo , Lynne McCusker , Christian Baerlocher and Xiaodong Zou EMAIL logo
Published/Copyright: March 28, 2015

Abstract

Zeolites are crystalline aluminosilicate framework materials with corner sharing TO4 (T = Al, Si) tetrahedra forming well-defined pores and channels. Many zeolites are built from similar building units (i.e., isolated units, chains or layers), which are connected in different ways to form a variety of topologies. We have identified ten zeolite frameworks that share the same two-dimensional “butterfly” net containing 5-, 6- and 10-rings: *MRE, FER, MEL, SZR, MFS, MFI, TUN, IMF, BOG and TON. Different orientations of the TO4 tetrahedra within the layer lead to different connectivities between neighboring layers. Some layers are corrugated and some are flat, resulting in different channel systems parallel to the layer. We found some interesting relationships between the unit cell parameters and this channel system that allow the size of the channels and their directions to be deduced from the unit cell dimensions. This may facilitate the prediction of new members of this zeolite family. In addition, other zeolites containing the “butterfly” layers are also discussed.


Corresponding authors: Wei Wan and Xiaodong Zou, Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; and Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden, E-mail: ,

Acknowledgments

The project was supported by the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Knut & Alice Wallenberg Foundation through the project grant 3DEM-NATUR. We thank the reviewers for their help in identifying eight framework types containing the butterfly layer (–SVR, OKO, SFS, CON, TER, MEP, MTN and GON) by Topos Pro.

References

[1] C. Baerlocher, L. B. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases/. The 3-letter codes assigned to the unique framework types in this database are given for each material in boldface text throughout the manuscript.Search in Google Scholar

[2] W. Baur, On cation + water positions in faujasite. Am. Mineral.1964, 49, 697.Search in Google Scholar

[3] G. T. Kokotailo, S. L. Lawton, D. H. Olson, W. M. Meier, Structure of synthetic zeolite ZSM-5. Nature1978, 272, 437.10.1038/272437a0Search in Google Scholar

[4] W. M. Meier, The crystal structure of mordenite (ptilolite)*. Z. Kristallogr.1961, 115, 439.Search in Google Scholar

[5] P. A. Vaughan, The crystal structure of the zeolite ferrierite. Acta Crystallogr.1966, 21, 983.Search in Google Scholar

[6] J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, C. B. D. Gruyter, Structural characterization of zeolite beta. Proc. R Soc. Lond. Math. Phys. Sci.1988, 420, 375.Search in Google Scholar

[7] R. Barrer, H. Villiger, Crystal structure of synthetic zeolite L. Z. Kristallogr.1969, 128, 352.Search in Google Scholar

[8] R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys.2011, 13, 12407.Search in Google Scholar

[9] M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Z. Kristallogr.1997, 212, 768.Search in Google Scholar

[10] Y. Li, J. Yu, New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev.2014, 114, 7268.Search in Google Scholar

[11] M. W. Deem, R. Pophale, P. A. Cheeseman, D. J. Earl, Computational discovery of new zeolite-like materials. J. Phys. Chem. C2009, 113, 21353.10.1021/jp906984zSearch in Google Scholar

[12] M. D. Foster, M. M. J. Treacy, Progress towards an atlas of designer zeolites. In Stud. Surf. Sci. Catal., (Eds. R. Xu, Z. Gao J. Chen and W. Yan) Elsevier, Amsterdam. 2007, p. 666.10.1016/S0167-2991(07)80906-2Search in Google Scholar

[13] A. Le Bail, Predicted Crystallography Open Database.Search in Google Scholar

[14] H. Gies, H. van Koningsveld, Catalog of disorder in zeolite frameworks. http://www.iza-structure.org/databases/.Search in Google Scholar

[15] F. Hawthorne, J. Smith, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates combination of zigzag and saw chains with 63, 3.122, 4.82, 4.6.12 and (52.8)2(5.82)1 Nets. Z. Kristallogr.1988, 183, 213.Search in Google Scholar

[16] L. B. McCusker, C. Baerlocher, Chapter 2 Zeolite structures. In Stud. Surf. Sci. Catal., (Eds. J. Čejka, H. van B., A. Corma and F. Schüth) Elsevier, Amsterdam. 2007,p. 13.Search in Google Scholar

[17] J. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman, J. D. Wood, G. T. Kerr, W. J. Rohrbaugh, The framework topology of zeolite beta. Zeolites. 1988, 8, 446.Search in Google Scholar

[18] A. W. Burton, S. Elomari, I. Chan, A. Pradhan, C. Kibby, Structure and synthesis of SSZ-63: toward an ordered form of Zeolite beta. J. Phys. Chem. B2005, 109, 20266.10.1021/jp052438xSearch in Google Scholar

[19] Z. B. Yu, Y. Han, L. Zhao, S. L. Huang, Q. Y. Zheng, S. Z. Lin, A. Cordova, X. D. Zou, J. L. Sun, Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal x-ray diffraction. Chem. Mater.2012, 24, 3701.Search in Google Scholar

[20] L. Q. Tang, L. Shi, C. Bonneau, J. L. Sun, H. J. Yue, A. Ojuva, B. L. Lee, M. Kritikos, R. G. Bell, Z. Bacsik, et al. A zeolite family with chiral and achiral structures built from the same building layer. Nat. Mater.2008, 7, 381.Search in Google Scholar

[21] A. W. Burton, Structure solution of zeolites from powder diffraction data. Z. Kristallogr.2009, 219, 866.Search in Google Scholar

[22] The most common composite building units have been assigned codes by the IZA-SC and are listed in the Database of Zeolite Structures.Search in Google Scholar

[23] D. Xie, L. B. McCusker, C. Baerlocher, S. I. Zones, W. Wan, X. D. Zou, SSZ-52, a Zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. J. Am. Chem. Soc.2013, 135, 10519.Search in Google Scholar

[24] M. Moliner, T. Willhammar, W. Wan, J. Gonzalez, F. Rey, J. L. Jorda, X. D. Zou, A. Corma, Synthesis design and structure of a multipore zeolite with interconnected 12-and 10-MR channels. J. Am. Chem. Soc. 2012, 134, 6473.Search in Google Scholar

[25] D. Akporiaye, Structural relationships of zeolite frameworks – 5-ring zeolites. Z. Kristallogr.1989, 188, 103.Search in Google Scholar

[26] J. L. Schlenker, W. J. Rohrbaugh, P. Chu, E. W. Valyocsik, G. T. Kokotailo, The framework topology of ZSM-48: A high silica zeolite. Zeolites1985, 5, 355.10.1016/0144-2449(85)90124-1Search in Google Scholar

[27] C. A. Fyfe, H. Gies, G. T. Kokotailo, C. Pasztor, H. Strobl, D. E. Cox, Detailed investigation of the lattice structure of zeolite ZSM-11 by a combination of solid-state NMR and synchrotron x-ray diffraction techniques. J. Am. Chem. Soc.1989, 111, 2470.Search in Google Scholar

[28] K. G. Strohmeier, M. Afeworki, D. L. Dorset, The crystal structures of polymorphic SUZ-4. Z. Kristallogr.2009, 221, 689.Search in Google Scholar

[29] J. L. Schlenker, J. B. Higgins, E. W. Valyocsik, The framework topology of ZSM-57: a new synthetic zeolite. Zeolites1990, 10, 293.10.1016/0144-2449(94)90143-0Search in Google Scholar

[30] F. Gramm, C. Baerlocher, L. B. McCusker, S. J. Warrender, P. A. Wright, B. Han, S. B. Hong, Z. Liu, T. Ohsuna, O. Terasaki, Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature2006, 444, 79.10.1038/nature05200Search in Google Scholar PubMed

[31] C. Baerlocher, F. Gramm, L. Massuger, L. B. McCusker, Z. B. He, S. Hovmoller, X. D. Zou, Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science2007, 315, 1113.10.1126/science.1137920Search in Google Scholar PubMed

[32] J. Pluth, J. Smith, Crystal-structure of boggsite, a new high-silica zeolite with the 1st 3-dimensional channel system bounded by both 12-rings and 10-rings. Am. Mineral.1990, 75, 501.Search in Google Scholar

[33] S. A. I. Barri, G. W. Smith, D. White, D. Young, Structure of theta-1, the first unidimensional medium-pore high-silica zeolite. Nature1984, 312, 533.10.1038/312533a0Search in Google Scholar

[34] B. Marler, C. Deroche, H. Gies, C. A. Fyfe, H. Grondey, G. T. Kokotailo, Y. Feng, S. Ernst, J. Weitkamp, D. E. Cox, The structure of zeolite ZSM-23 (MTT) refined from synchrotron X-ray powder data. J. Appl. Crystallogr.1993, 26, 636.Search in Google Scholar

[35] W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour, S. E. Ashbrook, P. Chlubná, L. Grajciar, M. Položij, A. Zukal, et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem.2013, 5, 628.Search in Google Scholar

[36] Ch. Baerlocher, D. Xie, L.B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat. Mater.2008, 7, 631.Search in Google Scholar

[37] E. Verheyen, L. Joos, K. Van Havebergh, E. Breynaert, N. Kasian, E. Gobechiya, K. Houthoofd, C. Martineau, M. Hinterstein, F. Taulelle, V. Van Speybroeck, M. Waroquier, S. Bals, G. Van Tendeloo, Inverse sigma transofrmation. Nat. Mater.2012, 11, 1059.Search in Google Scholar

[38] S. Elomari, A. Burton, R. C. Medrud, R. Grosse-Kunstleve, The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites. Microporous Mesoporous Mat.2009, 118, 325.Search in Google Scholar

[39] R.F. Lobo, M. E. Davis, CIT-1: a new molecular sieve with intersecting pores bounded by 10- and 12-rings. J. Am. Chem. Soc.1995, 117, 3766.Search in Google Scholar

[40] E. Galli, S. Quartieri, G. Vezzalini, A. Alberti, M. Franzini, Terranovaite from antarctica: a new ‘pentasil’ zeolite. Am. Mineral.1997, 82, 423.Search in Google Scholar

[41] H. Gies, Studies on clathrasils. III. Crystal structure of melanophlogite, a natural clathrate compound of silica. Z. Kristallogr.1983, 164, 247.Search in Google Scholar

[42] J. L. Schlenker, F. G. Dwyer, E. E. Jenkins, W. J. Rohrbaugh, G. T. Kokotailo, W. M. Meier, Crystal structure of a synthetic high silica zeolite – ZSM-39. Nature1981, 294, 340.10.1038/294340a0Search in Google Scholar

[43] J. Plévert, Y. Kubota, T. Honda, T. Okubo, Y. Sugi, GUS-1: a mordenite-like molecular sieve with the 12-ring channel of ZSM-12. Chem. Commun.2000, 2363.10.1039/b005225fSearch in Google Scholar

[44] V. A. Blatov, Struct. Chem.2012, 23, 955. (http://topospro.com).10.1007/s11224-012-0013-3Search in Google Scholar

Received: 2014-11-19
Accepted: 2015-2-23
Published Online: 2015-3-28
Published in Print: 2015-5-1

©2015 by De Gruyter

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2014-1821/html
Scroll to top button