Abstract
The dehydration behavior of the microporous copper silicate Na2(Cu2Si5O13)·3H2O conventionally denoted as CuSH-6Na was studied using single crystal X-ray data collected at temperatures –150, 25, 40, 50, 60, 70 and 120 °C. Reversible dehydration of CuSH-6Na starts at ambient temperatures under dry nitrogen flow and is complete at 70 °C. The water molecules initially present in both ordered and disordered sites were simultaneously driven out beginning at ambient temperature. The dehydration is accompanied by a negative thermal expansion of the crystal caused by a slight progressive narrowing of the channels along the direction perpendicular to the silicate layers. The fully dehydrated structure has framework copper metal sites with open coordination spheres directly exposed to the space inside the accessible channels.
Acknowledgments
We thank the Robert. A. Welch Foundation (Grant No. E-0024) for financial support.
References
[1] A. K. Cheetham, G. Férey, T. Loiseau, Open-framework inorganic materials. Angew. Chem. Int. Ed. 1999, 38, 3268.Search in Google Scholar
[2] J. Yu, R. Xu, Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials. Acc. Chem. Res. 2010, 43, 1195.Search in Google Scholar
[3] J. Rocha, P. Brandão, Z. Lin, M. W. Anderson, V. Alfredsson, O. Terasaki, The first large-pore vanadosilicate framework containing hexacoordinated vanadium. Angew. Chem. Int. Ed. 1997, 36, 100.Search in Google Scholar
[4] X. Wang, L. Liu, A. J. Jacobson, Open-framework and microporous vanadium silicates. J. Am. Chem. Soc. 2002, 124, 7812.Search in Google Scholar
[5] R. J. Francis, A. J. Jacobson, The first organically templated open-framework niobium silicate and germanate phases: Low-temperature hydrothermal syntheses of [(C4N2H11)Nb3SiO10] (NSH-1) and [(C4N2H11)Nb3GeO10] (NGH-1). Angew. Chem. Int. Ed. 2001, 40, 2879.Search in Google Scholar
[6] H.-K. Liu, W.-J. Chang, K.-H. Lii, High-temperature, high-pressure hydrothermal synthesis and characterization of an open-framework uranyl silicate with nine-ring channels: Cs2UO2Si10O22. Inorg. Chem. 2011, 50, 11773.Search in Google Scholar
[7] J. Rocha, Z. Lin, Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Rev. Mineral. Geochem. 2005, 57, 173.Search in Google Scholar
[8] S. Natarajan, S. Mandal, Open-framework structures of transition-metal compounds. Angew. Chem. Int. Ed. 2008, 47, 4798.Search in Google Scholar
[9] S. M. Kuznicki, U.S. Patent No. 4,853,202. 1989.Search in Google Scholar
[10] M. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. MacKay, A. Ferreira, J. Rocha, S. Lidin, Structure of the microporous titanosilicate ETS-10. Nature 1994, 367, 347.10.1038/367347a0Search in Google Scholar
[11] X. Wang, A. J. Jacobson, Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data. Chem. Commun. 1999, 1999, 973.Search in Google Scholar
[12] S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720.10.1038/35089052Search in Google Scholar PubMed
[13] X. Wang, L. Liu, L. Wang, A. J. Jacobson, Open-framework copper titanosilicates. Mater. Res. Soc. Symp. Proc. 2005, 848, 97.Search in Google Scholar
[14] P. C. Burns, F. C. Hawthorne, Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. The Canadian Mineralogist 1996, 34, 1089.Search in Google Scholar
[15] H. Effenberger, G. Giester, W. Krause, H. Bernhardt, Tschörtnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany. Am. Mineral. 1998, 83, 607.Search in Google Scholar
[16] J. J. Pluth, J. V. Smith, Arizona porphyry copper/hydrothermal deposits ii: Crystal structure of ajoite, (K,Na)3Cu2Al3Si29O76(OH)16 ∼8H2O. Proc. Natl. Acad. Sci. 2002, 99, 11002.Search in Google Scholar
[17] M. Rumsey, M. Welch, A. Kampf, J. Spratt, Diegogattaite, Na2CaCu2Si8O20·H2O: A new nanoporous copper sheet silicate from Wessels mine, Kalahari manganese fields, Republic of South Africa. Mineral Magaz 2013, 77, 3155.10.1180/minmag.2013.077.8.09Search in Google Scholar
[18] M. D. Welch, M. S. Rumsey, A new naturally-occurring nanoporous copper sheet–silicate with 6482 cages related to synthetic “CuSH” phases. J. Solid State Chem. 2013, 203, 260.Search in Google Scholar
[19] X. Wang, L. Liu, A. J. Jacobson, Nanoporous copper silicates with one-dimensional 12-ring channel systems. Angew. Chem. Int. Ed. 2003, 42, 2044.Search in Google Scholar
[20] X. Wang, L. Liu, L. Wang, A. J. Jacobson, Hydrothermal synthesis and structures of the open-framework copper silicates Na2[Cu2Si4O11](H2O)2 (CuSH-2Na), Na2[CuSi3O8] (CuSH-3Na), Cs2Na4 [Cu2Si12O27(OH)2](OH)2 (CuSH-4NaCs), and Na2[Cu2Si5O13](H2O)3 (CuSH-6Na). Solid State Sci 2005, 7, 1415.10.1016/j.solidstatesciences.2005.09.001Search in Google Scholar
[21] Y. Hubert, D. Jordan, J. L. Guth, A. Kalt, Crystallographic characteristics of two new synthetic copper sodium silicates. Comptes Rendus des Seances de l’Academie des Sciences, Serie D: Sciences Naturelles 1977, 284, 329.Search in Google Scholar
[22] P. Brandão, F. A. A. Paz, J. Rocha, A novel microporous copper silicate: Na2Cu2Si4O11·2H2O. Chem. Commun. 2005, 2005, 171.Search in Google Scholar
[23] Q. Jiang, Q. Shi, H. Xu, J. Li, J. Dong, Hydrothermal synthesis of pure phase copper silicate Na2Cu2Si4O11·2H2O with ammonia as complexing agent. Eur. J. Inorg. Chem. 2011, 2011, 2112.Search in Google Scholar
[24] G. Férey, Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191.Search in Google Scholar
[25] Z. R. Herm, E. D. Bloch, J. R. Long, Hydrocarbon separations in metal–organic frameworks. Chem. Mater. 2013, 26, 323.Search in Google Scholar
[26] J. Gascon, A. Corma, F. Kapteijn, F. X. Llabres i Xamena, Metal organic framework catalysis: Quo vadis? ACS Catalysis 2013, 4, 361.10.1021/cs400959kSearch in Google Scholar
[27] M. Fischer, J. R. Gomes, M. Jorge, Computational approaches to study adsorption in MOFs with unsaturated metal sites. Molecular Simulation 2014, 40, 537.10.1080/08927022.2013.829228Search in Google Scholar
[28] Y. Huang, B. Zhang, J. Duan, W. Liu, X. Zheng, L. Wen, X. Ke, D. Li, Two copper (ii) metal-organic frameworks with nanoporous channels and vacant coordination sites. Crystal Growth & Design 2014, 14, 2866.10.1021/cg500175kSearch in Google Scholar
[29] APEX-II: v.2012.10-0 Bruker AXS Madison (2012).Search in Google Scholar
[30] C. Hubschle, G. M. Sheldrick, B. Dittrich, Shelxle: A qt graphical user interface for Shelxl. J. Appl. Crystallogr. 2011, 44, 1281.Search in Google Scholar
[31] L. Cunha-Silva, P. Brandao, J. Rocha, F. Almeida Paz, The dehydrated copper silicate Na2[Cu2Si4O11]: A three-dimensional microporous framework with a linear Si-O-Si linkage. Acta Crystallogr. Sect. E: Struct. Rep. Online 2008, 64, i13.10.1107/S1600536808001608Search in Google Scholar PubMed PubMed Central
[32] P. Comodi, P. Zanazzi, Structural thermal behavior of paragonite and its dehydroxylate: A high-temperature single-crystal study. Phys. Chem. Miner. 2000, 27, 377.Search in Google Scholar
[33] I. D. Brown, The chemical bond in inorganic chemistry. Oxford Univ. Press, Oxford, UK, 2006.10.1093/acprof:oso/9780199298815.001.0001Search in Google Scholar
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- The importance of T⋯T⋯T angles in the feasibility of zeolites
- On the relationship between unit cells and channel systems in high silica zeolites with the “butterfly” projection
- A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34
- Structure and bonding of water molecules in zeolite hosts: Benchmarking plane-wave DFT against crystal structure data
- A microporous potassium vanadyl phosphate analogue of mahnertite: hydrothermal synthesis and crystal structure
- Crystal chemical models for the cancrinite-sodalite supergroup: the structure of a new 18-layer phase
- Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group
- Structures of dehydrated microporous copper silicate CuSH-6Na, an in situ single crystal X-ray study
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- The importance of T⋯T⋯T angles in the feasibility of zeolites
- On the relationship between unit cells and channel systems in high silica zeolites with the “butterfly” projection
- A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34
- Structure and bonding of water molecules in zeolite hosts: Benchmarking plane-wave DFT against crystal structure data
- A microporous potassium vanadyl phosphate analogue of mahnertite: hydrothermal synthesis and crystal structure
- Crystal chemical models for the cancrinite-sodalite supergroup: the structure of a new 18-layer phase
- Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group
- Structures of dehydrated microporous copper silicate CuSH-6Na, an in situ single crystal X-ray study