Startseite New findings on N-mayenite and a new kind of anion substituted mayenite: Ca12 Al14 O32(NO2)2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New findings on N-mayenite and a new kind of anion substituted mayenite: Ca12 Al14 O32(NO2)2

  • Alexander Schmidt , Hans Boysen , Anatoliy Senyshyn und Martin Lerch EMAIL logo
Veröffentlicht/Copyright: 16. April 2014

Abstract

The framework structure of O-mayenite (Ca12 Al14 O33) allows the substitution of extra framework oxygen anions by various anions. In this study we present two new anion substituted phases. Oxidation of CN-mayenite leads to the formation of NO2-mayenite and, in addition, there are some hints to a very unusual species present in N-mayenite: the hydrazide anion.


Corresponding author: Martin Lerch, Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:

Acknowledgments

This work was supported by the German Science Foundation (DFG) within PAK 596.

References

[1] H. Boysen, M. Lerch, A. Stys, A. Senyshyn, Structure and oxygen mobility in mayenite Ca12 Al14 O33: a high-temperature neutron powder diffraction study. Acta Cryst. B 2007, 63, 675.10.1107/S0108768107030005Suche in Google Scholar PubMed

[2] M. Lacerda, J. T. S. Irvine, F. P. Glasser, A. R. West, High oxide ion conductivity in Ca12 Al14 O33. Nature 1988, 332, 526.10.1038/332525a0Suche in Google Scholar

[3] S. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen, H. Hosono, Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al2 O3. Appl. Catal. A 2004, 277, 239.10.1002/chin.200413022Suche in Google Scholar

[4] P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Partial oxidation of methane to syngas over promoted C12A7. Phys. Rev. Lett. 2003, 91, 126401.Suche in Google Scholar

[5] J. Jeevaratnam, F. P. Glasser, L. S. Dent Glasser, Anion substitution and structure of 12CaO·7Al2 O3. J. Am. Ceram. Soc. 1964, 47, 105.Suche in Google Scholar

[6] H. Hosono, Y. Abe, Occurrence of superoxide radical ion in crystalline 12CaO·7Al2 O3 prepared via solid-state route. Inorg. Chem. 1987, 26, 1192.Suche in Google Scholar

[7] S. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen, H. Hosono, Electron localization and a confined electron gas in nanoporous inorganic electrides. Chem. Mater. 2004, 16, 104.Suche in Google Scholar

[8] G. I. Zhmoidin, G. S. Smirnov, Stabilization of calcium oxide-aluminum oxide 12CaO·7Al2 O3 and its derivatives. Inorg. Mater.1982, 18, 1189.Suche in Google Scholar

[9] P. V. Sushko, A. L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Photoinducted generation of electron anions in H-doped nanoporous oxide 12CaO·7Al2 O3: toward an optically controlled formation of electrides. Appl. Phys. Lett. 2005, 86, 092101.Suche in Google Scholar

[10] M. Lerch, J. Janek, K. Becker, S. Berendts, H. Boysen, T. Bredow, R. Dronskowski, S. G. Ebbinghaus, M. Kilo, M. W. Lumey, M. Martin, C. Reimann, E. Schweda, I. Valov, H. D. Wiemhoefer, Oxide nitrides: from oxides to solids with mobile nitrogen ions. Progr. Solid State Chem. 2009, 37, 81.Suche in Google Scholar

[11] H. Boysen, I. Kaiser-Bischoff, M. Lerch, S. Berendts, M. Hoelzel, A. Senyshyn, Disorder and diffusion in mayenite. Acta Physica Polonica 2010, 117, 38.10.12693/APhysPolA.117.38Suche in Google Scholar

[12] H. Boysen, I. Kaiser-Bischoff, M. Lerch, S. Berendts, A. Börger, D. M. Trots, M. Hoelzel, A. Senyshyn, Structures and properties of variously doped Mayenite investigated by neutron and synchrotron powder diffraction. Z. Kristallogr. Suppl. 2009, 30, 323.Suche in Google Scholar

[13] H. Boysen, I. Kaiser-Bischoff, M. Lerch, Anion diffusion processes in O- and N-mayenit investigated by neutron powder diffraction. Diffus. Fundamentals 2008, 8, 2.1.Suche in Google Scholar

[14] R. Strandbakke, C. Kongshaug, R. Haugsrud, T. Norby, High-temperature hydration and conductivity of mayenite, Ca12 Al14 O33. J.Chem. Phys. 2009, 113, 8938.Suche in Google Scholar

[15] M. Hoelzel, A. Senyshyn, N. Juenke, H. Boysen, W. Schmahl, H. Fuess, High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instr. A 2012, 667, 32.10.1016/j.nima.2011.11.070Suche in Google Scholar

[16] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a windows tool for powder diffraction analysis. Mater. Sci. Forum 2001, 118, 378.10.4028/www.scientific.net/MSF.378-381.118Suche in Google Scholar

[17] V. Petricek, M. Dusek, Methods of structural analysis and computer programm JANA2000. Z. Kristallogr 2004, 219, 692.10.1524/zkri.219.11.692.52439Suche in Google Scholar

[18] R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxide and fluorides. Acta Cryst. 1969, 25, 925.Suche in Google Scholar

[19] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751.Suche in Google Scholar

[20] D. F. C. Morris, Crystal radius of cyanide ion. Acta Cryst. 1961, 14, 547.Suche in Google Scholar

[21] G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd edition. Wiley, Chinchester, 2004.Suche in Google Scholar

Received: 2013-12-12
Accepted: 2014-3-24
Published Online: 2014-4-16
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2013-1720/html
Button zum nach oben scrollen