Startseite Surface Dilatational Properties and Foam Performance of Surfactant-Nanoparticle Foaming System under Ultra-High Salinity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface Dilatational Properties and Foam Performance of Surfactant-Nanoparticle Foaming System under Ultra-High Salinity

  • Yang Wang

    Yang Wang, lecturer of Xi’an Shiyou University.

    EMAIL logo
Veröffentlicht/Copyright: 17. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We have studied the surface dilatational properties of aqueous foaming dispersions containing mixtures of silica nanoparticles (Ludox CL) and sulfobetaine (LHSB) in Tahe formation water. The effects of temperature and pH on the surface dilatational modulus and time shift were studied by oscillating drop module (ODM). The ODM results show that the surface dilatational modulus of mixtures of CL and LHSB is large and increases with the decrease of surface area deformation, which results from hydrophobic interaction between adsorbed mixtures. Under test conditions, the Gibbs stability criterion E > σ/2 against foam coarsening is fulfilled. Results of Brewster angle microscopy (BAM) show that an uniform adsorption layer is established at the air-water interface. Temperature and pH-value influence the dilatation modulus of the surface by hydrophobic interaction or adsorption. Time shift has a similar variation trend. This is a surprising feature. It suggests that LHSB adsorbed on CL can respond to surface tension gradient. The time shift difference results from the response of LHSB at different adsorption sites. In addition, sand pack tests show that compared to LHSB, a finer foam was produced by the mixtures CL/LHSB due to the capillary-induced \snap-off". Thus, higher pressure difference and higher oil recovery could be achieved.

Abstract

Wir haben die Oberflächendilatationseigenschaften von wässrigen schaumbildenden Dispersionen, die Mischungen von Silica-Nanopartikeln (Ludox CL) und Sulfobetain (LHSB) enthalten, in Wasser der Tahe-Formation untersucht. Die Auswirkungen von Temperatur und pH-Wert auf den Oberflächen-Dilatationsmodul und die Relaxationszeit wurden mit Hilfe des oszillierenden Tropfenmoduls (ODM) untersucht. Die ODM-Ergebnisse zeigen, dass der Oberflächen-Dilatationsmodul von Mischungen aus CL und LHSB groß ist und mit der Abnahme der Oberflächendeformation zunimmt, die aus der hydrophoben Wechselwirkung zwischen adsorbierten Mischungen resultiert. Unter Testbedingungen wird das Gibbs-Stabilitätskriterium E > σ/2 gegen die Schaumvergröberung erfüllt. Ergebnisse der Brewster-Winkel-Mikroskopie zeigen, dass sich eine gleichmäßige Adsorptionsschicht an der Luft-Wasser-Grenzfläche ausbildet. Temperatur und pH-Wert beeinflussen den Oberflächen-Dilatationsmodul durch hydrophobe Wechselwirkung bzw. Adsorptions. Die Änderung der Relaxationszeit hat einen ähnlichen Trend. Dies ist ein überraschendes Merkmal. Es deutet darauf hin, dass an CL adsorbiertes LHSB auf den Oberflächenspannungsgradienten reagieren kann. Die Änderung der Relaxationszeit ergibt sich aus der Reaktion von LHSB an verschiedenen Adsorptionsstellen. Darüber hinaus zeigen die Sandpackversuche, dass im Vergleich zu LHSB mit den Mischungen CL/LHSB aufgrund des kapillarbedingten \snap-off" ein feinerer Schaum erzeugt wurde. Dadurch konnte eine höhere Druckdifferenz und eine höhere Ölrückgewinnung erzielt werden.


Dr. Yang Wang Xi’an Shiyou University No.18, Dianzi 2 Road Yanta district Xi’an China Shanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs

About the author

Dr. Yang Wang

Yang Wang, lecturer of Xi’an Shiyou University.

Acknowledgements

Financial support by the National Natural Science Foundation of China (51574266, 51474234, 51704235 and 51504192) are gratefully acknowledged.

References

1 Rio, E., Drenckhan, W., Salonen, A. and Langevin, D.: Unusually Stable Liquid Foams. Adv Colloid Interface Sci. 205 (2014) 74–86. PMid:24342735; DOI:10.1016/j.cis.2013.10.02310.1016/j.cis.2013.10.023Suche in Google Scholar

2 Alargova, R. G., Warhadpande, D. S., Paunov, V. N. and Velev, O. D.: Foam Superstabilization by Polymer Microrods. Lang. 20 (2004) 10371–10374. PMid:15544360; DOI:10.1021/la048647a10.1021/la048647aSuche in Google Scholar

3 Binks, B. P. and Horozov, T. S.: Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem. Int. Edit. 117 (2005) 3788–3791. DOI:10.1002/ange.20046247010.1002/ange.200462470Suche in Google Scholar

4 Gonzenbach, U. T., Studart, A. R., Tervoort, E. and Gauckler, L. J.: Ultrastable Particle Stabilized Foams. Angew. Chem. Int. Edit. 45 (2006) 3526–3530. PMid:16639761; DOI:10.1002/ange.20050367610.1002/ange.200503676Suche in Google Scholar

5 Fujii, S., Ryan, A. J. and Armes, S. P.: Long-range Structural Order, Moiré Patterns, and Iridescence in Latex-stabilized Foams. J. Am. Chem. Soc. 128 (2006) 7882–7886. PMid:16771501; DOI:10.1021/ja060640n10.1021/ja060640nSuche in Google Scholar

6 Vijayaraghavan, K., Nikolov, A. and Wasan, D.: Foam Formation and Mitigation in a Three-phase Gas-liquid-particulate System. Adv. Colloid Interface Sci. 123 (2006) 49–61. PMid:16997269; DOI:10.1016/j.cis.2006.07.00610.1016/j.cis.2006.07.006Suche in Google Scholar

7 Binks, B. P. and Murakami, R. B.: Phase Inversion of Particle-stabilized Materials from Foams to Dry Water. Nat. Mater. 5 (2006) 865–869. PMid:17041582; DOI:10.1038/nmat175710.1038/nmat1757Suche in Google Scholar

8 Tang, F. Q., Xiao, Z., Tang, J. A. and Jiang, L. C.: The Effect of SiO2 Particles upon Stabilization of Foam. J. Colloid Interf Sci. 131(1989) 498–502. DOI:10.1016/0021-9797(89)90192-610.1016/0021-9797(89)90192-6Suche in Google Scholar

9 Kumagai, H., Torikata, Y., Yoshimura, H., Kato, M. and Yano, T.: Estimation of the Stability ofFoam Containing Hydrophobic Particles by Parameters in the Capillary Model. Agric Biol Chem. 5(1991) 1823–1829. DOI:10.1271/bbb1961.55.182310.1271/bbb1961.55.1823Suche in Google Scholar

10 Garrett, P. R.: The Effect of Polytetrafluoroethylene Particles on the Foamability of Aqueous Surfactant Solutions. J Colloid Interface Sci. 69(1979) 107–121. DOI:10.1016/s0301-7516(03)00085-110.1016/s0301-7516(03)00085-1Suche in Google Scholar

11 Aveyard, R., Binks, B. P., Fletcher, P. D., Peck, T. G. and Rutherford, C. E.: Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. Adv Colloid Interface Sci. 48(1994) 93–120. DOI:10.1016/0001-8686(94)80005-710.1016/0001-8686(94)80005-7Suche in Google Scholar

12 Denkov, N. D.: Mechanisms of Foam Destruction by Oil-based Antifoams. Lang. 20 (2004) 9463–9505. PMid:15491178; DOI:10.1021/la049676o10.1021/la049676oSuche in Google Scholar

13 Binks, B. P.: Particles as Surfactants-Similarities and Differences. Curr Opin Colloid In. 7 (2002) 21–41. DOI:10.1016/s1359-0294(02)00008-010.1016/s1359-0294(02)00008-0Suche in Google Scholar

14 Du, Z., Bilbao-Montoya, M. P., Binks, B. P., Dickinson, E. D. and Ettelaie, R. E.; Murray, B. S.: Outstanding Stability of Particle-stabilized Bubbles. Lang. 19 (2003) 3106–3108. DOI:10.1021/la034042n10.1021/la034042nSuche in Google Scholar

15 Dickinson, E., Ettelaie, R., Kostakis, T. and Murray, B. S.: Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Lang. 20 (2004) 8517–8525. PMid:15379469; DOI:10.1021/la048913k10.1021/la048913kSuche in Google Scholar

16 Horozov, T. S. and Binks, B. P.: Particle-Stabilized Emulsions: A Bilayer or a Bridging Monolayer? Angew Chem Int Edit. 45 (2006) 773–776. PMid:16355432; DOI:10.1002/ange.20050313110.1002/ange.200503131Suche in Google Scholar

17 Holmberg, K., Shah, D. O. and Schwuger, M. J.: Handbook of Applied Surface and Colloid Chemistry. John Wiley & Sons, 2002.Suche in Google Scholar

18 Shibata, J. and Fuerstenau, D. W.: Flocculation and Flotation Characteristics of Fine Hematite with Sodium Oleate. Int J Miner Process. 72 (2003) 25–32. DOI:10.1016/s0301-7516(03)00085.-110.1016/s0301-7516(03)00085.-1Suche in Google Scholar

19 Healy, T. W., Somasundaran, P. and Fuerstenau, D. W.: The Adsorption of Alkyl and Alkylbenzene Sulfonates at Mineral Oxide–water Interfaces. Int J Miner Process. 72 (2003) 3–10. DOI:10.1016/s0301-7516(03)00083-810.1016/s0301-7516(03)00083-8Suche in Google Scholar

20 Fuerstenau, D. W. and Colic, M. B.: Self-association and Reverse Hemimicelle Formation at Solid– water Interfaces in Dilute Surfactant Solutions. Colloids Surf A. 146(1999) 33–47. DOI:101016/s0927-7757(98)00795-x101016/s0927-7757(98)00795-xSuche in Google Scholar

21 Lu, S. and Song, S.: Hydrophobic Interaction in Flocculation and Flotation 1. Hydrophobic Flocculation of Fine Mineral Particles in Aqueous Solution. Colloids Surfaces. 57(1991) 49–60. DOI:10.1016/0166-6622(91)80179-r10.1016/0166-6622(91)80179-rSuche in Google Scholar

22 Gonzenbach, U. T., Studart, A. R., Tervoort, E. and Gauckler, L. J.: Ultrastable Particle-Stabilized Foams. Angew Chem Int Edit. 45 (2006) 3526–3530. PMid:16639761; DOI:10.1002/ange.20050367610.1002/ange.200503676Suche in Google Scholar

23 Binks, B. P., Campbell, S. B., Mashinchi, S. C. and Piatko, M. P.: Dispersion Behavior and Aqueous Foams in Mixtures of a Vesicle-Forming Surfactant and Edible Nanoparticles. Lang, 31 (2015) 2967–2978. PMid:25734773; DOI:10.1021/la504761x10.1021/la504761xSuche in Google Scholar PubMed

24 Varade, D. A., Carriere, D. B., Arriaga, L. R., Fameau, A. L., Rio, E., Langevin, D. and Drenckhan W.: On the Origin of the Stability of Foams Made from Catanionic Surfactant Mixtures. Soft Matter. 7 (2011) 6557–6570. DOI:10.1039/c1sm05374d10.1039/c1sm05374dSuche in Google Scholar

25 Golemanov, K., Tcholakova, S., Denkov, N. D., Ananthapadmanabhan, K. P. and Lips, A.: Breakup of Bubbles and Drops in Steadily Sheared Foams and Concentrated Emulsions. Phys Rev E. 78 (2007) 902–904. PMid:19113128; DOI:10.1103/physreve.78.05140510.1103/physreve.78.051405Suche in Google Scholar PubMed

26 Denkov, N. D., Tcholakova, S. and Golemanov, K.: The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter. 5 (2009) 3389–3408, DOI: dx.doi.org/10.1039/b903586a DOI: 10.1039/b903586aSuche in Google Scholar

27 Gao, W., Ding, L. and Zhu, Y.: Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites. Tenside Surfactants Detergents, 54 (2017) 230–237. DOI:10.3139/113.11049010.3139/113.110490Suche in Google Scholar

28 Khalid, K., Zain, S. M. and Suk, V. et al: Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS- in Colloidal System. Tenside Surfactants Detergents, 54 (2017):224–229. DOI:10.3139/113.11049910.3139/113.110499Suche in Google Scholar

29 Yang, W., Jijiang, G. and Wen, Z.: Surface property and enhanced oil recovery study of foam aqueous dispersions comprised of surfactants-organic acids-nanoparticles. RSC Adv., 6 (2016) 113478–113486. DOI:10.1039/C6RA22988C10.1039/C6RA22988CSuche in Google Scholar

30 Nedyalkov, M., Krustev, R., Kashchiev, D., Platikanov, D. and Exerowa, D.: Permeability of Newtonian Black Foam Films to Gas. Colloid Polym Sci. 266(1998) 291–296. DOI:10.1007/bf0145259210.1007/bf01452592Suche in Google Scholar

31 Binks, B. P., Kirkland, M. and Rodrigues, J. A.: Origin of Stabilisation of Aqueous Foams in Nanoparticle–surfactant Mixtures. Soft Matter. 4 (2008) 2373–2382, [32] Golemanov, K.; Denkov, N. D.; Tcholakova, S.; Vethamuthu, M.; Lips, A.: Surfactant Mixtures for Control of Bubble Surface Mobility in Foam Studies. Lang. 24 (2008) 9956–9961. PMid:18698860; DOI:10.1021/la801538610.1021/la8015386Suche in Google Scholar PubMed

32 Denkov, N. D., Subramanian, V., Gurovich, D. and Lips, A.: Wall Slip and Viscous Dissipation in Sheared Foams: Effect of Surface Mobility. Colloids Surf A. 263 (2005) 129–145. 10.1016/j.colsurfa.2005.02.038Suche in Google Scholar

33 Hu, X., Li, Y., Sun, H., Song, X., Li, Q., Cao, X. and Li, Z.: Effect of Divalent Cationic Ions on the Adsorption Behavior of Zwitterionic Surfactant at Silica/Solution Interface. J Phys Chem B. 114 (2010) 8910–8916. PMid:20572645; DOI:10.1021/jp101943m10.1021/jp101943mSuche in Google Scholar PubMed

34 Wang, Y. and Ge, J.: Effect of Surface Dilatational Modulus on Bubble Generation in Visualized Pore-Throat Models. Journal of Surfactants and Detergents. 21 (2018) 283–291. DOI:10.1021/la504761x10.1021/la504761xSuche in Google Scholar PubMed

Received: 2019-01-21
Accepted: 2019-03-13
Published Online: 2021-02-17
Published in Print: 2021-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tsd-2019-2155/html?lang=de
Button zum nach oben scrollen