Startseite Technik Investigation of Flow Distortion Generated Forced Response of a Radial Turbine with Vaneless Volute
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of Flow Distortion Generated Forced Response of a Radial Turbine with Vaneless Volute

  • Zhi Huang , Chaochen Ma EMAIL logo und Hong Zhang
Veröffentlicht/Copyright: 18. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For a radial turbine with vaneless volute, the inflow of turbine rotor usually has a circumferential flow distortion due to the influence of the volute tongue. The rotating blades of the rotor are exposed to harmonic aerodynamic loads caused by the distortion, which may induce rotor resonance and lead to high cycle failures (HCF). To understand the forced response mechanism clearly, a numerical analysis was carried out based on a fluid structure interaction (FSI) method. The pressure functions were extracted from the results of a computational fluid dynamics (CFD) analysis by Fourier decomposition. The first three harmonic pressures were identified as the primary engine order (EO) excitations and imposed on the structural model for computational structural dynamics (CSD) simulation. The quantification and assessment of the rotor response were attained by mode superposition method. The simulation results are shown to be consistent with the predictions of Singh’s advanced frequency evaluation (SAFE) diagram.

Funding statement: This research was supported by the National Natural Science Foundation of China (Grant No. 51375048).

Nomenclature

Am

Fourier coefficient

C

Damping matrix

f

External forcing vector

K

Stiffness matrix

M

Number of retained harmonics

M

Mass matrix

m

Harmonic index

N

Number of sectors

n

Harmonic index

P1,0

Time averaged value of pressure

P1,n

Real pressure component of the nth harmonic

P2,n

Imaginary pressure components of the nth harmonic

T

Period of one rotor revolution

t

Time

x

Displacement vector

xj

Displacement vector of the jth sector

xˆn

Cyclic component

Ω

Fundamental frequency

ω

Fundamental frequency

BPF

Blade passing frequency

CFD

Computational fluid dynamics

CSD

Computational structural dynamics

EO

Engine order

FE

Finite element

FSI

Fluid structure interaction

FT

Fourier transformation

HCF

High cycle failure

ND

Nodal diameter

PS

Pressure side

RANS

Reynolds Averaged Navier-Stokes

SAFE

Singh’s advanced frequency evaluation diagram

SS

Suction side

References

1. Suhrmann JF, Peitsch D, Gugau M, Heuer T. On the effect of volute tongue design on radial turbine performance. ASME Turbo Expo Paper No. GT2012-69525, 2012.10.1115/GT2012-69525Suche in Google Scholar

2. Cerdoun M, Ghenaiet A. Analyses of steady and unsteady flows in a turbocharger’s radial turbine. P I Mech Eng E J Pro 2015;229:130–145.10.1177/0954408914566896Suche in Google Scholar

3. Yang M, Martinez-Botas R, Rajoo S, Yokoyama T, Ibaraki S. An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine. Energy Convers Manage 2015;105:167–177.10.1016/j.enconman.2015.06.038Suche in Google Scholar

4. Shah SP, Channiwala SA, Kulshreshtha DB, Chaudhari G. Design and numerical simulation of radial inflow turbine volute. Int J Turbo Jet Eng 2014;31:287–301.10.1515/tjj-2014-0002Suche in Google Scholar

5. Simpson AT, Spence SW, Watterson JK. A comparison of the flow structures and losses within vaned and vaneless stators for radial turbines. J Turbomach 2009;131:031010–1-15.10.1115/1.2988493Suche in Google Scholar

6. Gu F, Engeda A, Benisek E. A comparative study of incompressible and compressible design approaches of radial inflow turbine volutes. P I Mech Eng A J Pow 2001;215:475–486.10.1243/0957650011538730Suche in Google Scholar

7. Ma C, Huang Z, Qi M. Investigation on the forced response of a radial turbine under aerodynamic excitations. J Therm Sci 2016;25:130–137.10.1007/s11630-016-0843-1Suche in Google Scholar

8. Liu Y, Yang C, Qi M, Zhang H, Zhao B. Shock, leakage flow and wake interactions in a radial turbine with variable guide vanes. ASME Turbo Expo Paper No. GT2014-25888, 2014.10.1115/GT2014-25888Suche in Google Scholar

9. Schwitzke M, Schulz A, Bauer HJ. Prediction of high-frequency blade vibration amplitudes in a radial inflow turbine with nozzle guide vanes. ASME Turbo Expo Paper No. GT2013-94761, 2013.10.1115/GT2013-94761Suche in Google Scholar

10. Heuer T, Gugau M, Klein A, Anschel P. An analytical approach to support high cycle fatigue validation for turbocharger turbine stages. ASME Turbo Expo Paper No. GT2008-50764, 2008.10.1115/GT2008-50764Suche in Google Scholar

11. Baines NC, Lavy M. Flows in vaned and vaneless stators of radial inflow turbocharger turbines. Trans I Mech Eng Conf Paper No. C405/005, 1990.Suche in Google Scholar

12. Bréard C, Green JS, Imregun M. Low-engine-order excitation mechanisms in axial-flow turbomachinery. J Propul Power 2003;19:704–712.10.2514/2.6160Suche in Google Scholar

13. Turco PD, Del Greco AS, Natali D, Borys R, Biagi R. Design and optimization of radial flow wheels for a waste heat recovery double supersonic stage turbo-expander. ASME Turbo Expo Paper No. GT2010-23649, 2010.10.1115/GT2010-23649Suche in Google Scholar

14. Kulkarni A, LaRue G. Vibratory response characterization of a radial turbine wheel for automotive turbocharger application. ASME Turbo Expo Paper No. GT2008-51355.10.1115/GT2008-51355Suche in Google Scholar

15. He L. Fourier methods for turbomachinery applications. Prog Aerosp Sci 2010;46:329–341.10.1016/j.paerosci.2010.04.001Suche in Google Scholar

16. Biesinger T, Cornelius C, Rube C, Braune A, Campregher R, Godin PG, et al. Unsteady CFD methods in a commercial solver for turbomachinery applications. ASME Turbo Expo Paper No. GT2010-22762, 2010.10.1115/GT2010-22762Suche in Google Scholar

17. Bardina JE, Huang PG, Coakley TJ. Turbulence modeling, validation, testing and development. NASA TM 110446, 1997.10.2514/6.1997-2121Suche in Google Scholar

18. Laxalde D, Thouverez F, Lombard JP. Forced response analysis of integrally bladed disks with friction ring dampers. J Vibr Acoust 2010;132:011013–1-9.10.1115/1.4000763Suche in Google Scholar

19. Bertini L, Neri P, Santus C, Guglielmo A, Mariotti G. Analytical investigation of the SAFE diagram for bladed wheels, numerical and experimental validation. J Sound Vibr 2014;333:4771–4788.10.1016/j.jsv.2014.04.061Suche in Google Scholar

Received: 2017-05-12
Accepted: 2017-06-04
Published Online: 2020-09-18
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2017-0016/pdf
Button zum nach oben scrollen