Startseite Frequency Domain Identification of Multivariable Model for Aero-Engine using an Improved Maximum Likelihood Method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Frequency Domain Identification of Multivariable Model for Aero-Engine using an Improved Maximum Likelihood Method

  • Nan Liu , Jinquan Huang EMAIL logo , Feng Lu und Muxuan Pan
Veröffentlicht/Copyright: 7. Januar 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For the linear modeling problem of multivariable system of aero-engine, considering the coupling between parameters, a multivariable maximum likelihood (ML) estimation method is researched. An improved expectation-maximization (EM) algorithm integrated genetic algorithm (GA) is proposed and applied to the process of ML identification of frequency domain. The amplitude, harmonic and phase vectors of odd-odd multi-sine exciting signal are designed and optimized. With the application of the proposed method, multivariable linear models of aero-engine at different operation states in flight envelope are established from nonlinear component-level model. The precision is demonstrated through simulations comparing to nonlinear model.

PACS (2010).: 45.90.+t

Funding statement: Funding: This work is supported by “the Fundamental Research Funds for the Central Universities (NS2013017)”.

References

1. SanjayG. Aircraft turbine engine control research at NASA Glenn research center. J Aerosp Eng2013;26:42238.10.1061/(ASCE)AS.1943-5525.0000296Suche in Google Scholar

2. SanjayG. Turbofan engine control system design using the LQG/LTR methodology, NASA-CR–182303.Suche in Google Scholar

3. JamesT, JonathanA,L, IntelligentS. Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lypunov Function Design, NASA/TM–2004–213375.Suche in Google Scholar

4. XiW, JieY, DaoliangT, XinfengT, WangH.Application of robust control to the design of jet engine digital controller. J Aerosp Power2005;20:67983 (in Chinese).Suche in Google Scholar

5. HanzR, AnilS, JonathenLS. Multiplexed predictive control of a large commercial turbofan engine. J Guid Control Dyn2008;31:27381.10.2514/1.30591Suche in Google Scholar

6. SugiyamaN. Derivation of ABCD system matrices from nonlinear dynamic simulation of jet engines. AIAA 92–3319, 1992.10.2514/6.1992-3319Suche in Google Scholar

7. LuJ, GuoY, ChenX. Establishment of aero-engine state variable model based on linear fitting method. J Aerosp Power2011;26:11727.Suche in Google Scholar

8. LuF, HuangJ, SheY. State space modeling based on QPSO hybrid method for aero-engines. J Propul Technology2011;32:7227.Suche in Google Scholar

9. MantonJH, HuaY. A frequency domain deterministic approach to channel identification. IEEE Signal Process Lett1999;6:3236.10.1109/97.803436Suche in Google Scholar

10. WahlbergB, HjalmarssonH, StoicaP. On the performance of optimal input signal for frequency response estimation. IEEE Trans Autom Control2012;57:76671.10.1109/TAC.2011.2166322Suche in Google Scholar

11. MitchellSD, WelshJS. Modeling power transformers to support the interpretation of frequency-response analysis. IEEE Trans Power Deliv2011;26:270517.10.1109/TPWRD.2011.2164424Suche in Google Scholar

12. DuY, FangJ, MiaoC. Frequency-domain system identification of an unmanned helicopter based on an adaptive genetic algorithm. IEEE Trans Ind Electron2014;61:87081.10.1109/TIE.2013.2257135Suche in Google Scholar

13. AgueroJC, YuzAJ, GoodwinGC, DelgadoRA. On the equivalence of time and frequency domain maximum likelihood estimation. Automatica2010;46:26070.10.1016/j.automatica.2009.10.038Suche in Google Scholar

14. EvansC, FlemingPJ, HillDC, NortonJP, PrattI, ReesD, et al. Application of system identification techniques to aircraft gas turbine engines. Control Eng Pract2001;9:13548.10.1016/S0967-0661(00)00091-5Suche in Google Scholar

15. EvansC, ChirasN, GuillaumeP, ReesD. Multivariable modeling of gas turbine dynamics[C]//Symposium on Advances in Process control. York England. Advances in Process Control, ASME, 2001:18.Suche in Google Scholar

16. CappeO, MoulinesE. On-line expectation maximization algorithm for latent data models. J R Stat Soc Ser B2009;71:593613.10.1111/j.1467-9868.2009.00698.xSuche in Google Scholar

17. WillsA, NinnessB, GibsonS. Maximum likelihood estimation of state space models from frequency domain data. IEEE Trans Autom Control2009;54:1933.10.1109/TAC.2008.2009485Suche in Google Scholar

18. DenoeuxT. Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst2011;183:7291.10.1016/j.fss.2011.05.022Suche in Google Scholar

19. NeeserFD, MasseyJL. Proper complex random processes with applications to information theory. IEEE Trans Inf Theory1993;39:1293302.10.1109/18.243446Suche in Google Scholar

20. Van Den BosA. The real-complex normal distribution. IEEE Trans Inf Theory1998;44:16702.10.1109/18.681349Suche in Google Scholar

21. DebK, SrivastavaS. A genetic algorithm based augmented Lagrangian method for constrained optimization. Comput Optim Appl2012;53:869902.10.1007/s10589-012-9468-9Suche in Google Scholar

22. ChenC-W, ChenP-C, ChiangW-L. Modified intelligent genetic algorithm-based adaptive neural network control for uncertain structural systems. J Vibr Control2013;19:133347.10.1177/1077546312442232Suche in Google Scholar

23. SchoukensJ, PintelonR, GuillaumeP. On the advantages of periodic excitation in system identification [C]//proceedings of SYSID 94. 10th IFAC Symposium on System Identification. Copenhagen and Oxford: Pergamon, 1994:111520.10.1016/S1474-6670(17)47857-8Suche in Google Scholar

24. SchroederMR. Synthesis of low peak-factor signals and binary sequences of low auto correlation. IEEE Trans Inf Theory1970;16:8559.10.1109/TIT.1970.1054411Suche in Google Scholar

25. JawLC, MattinglyJD. Aircraft engine control: design, system analysis, and health monitoring. Reston, VA: American Institute of Aeronautics & Astronautics, 2009.Suche in Google Scholar

26. GuillaumeP, SchoukensJ, PintelonR, KollarI.Crest-factor minimization using nonlinear Chebyshev approximation methods. IEEE Trans Instrum Meas1991;40:9829.10.1109/19.119778Suche in Google Scholar

27. EvansC, ReesD, HillD. Frequency-domain identification of gas turbine dynamics. IEEE Trans Control Syst Technol1998;6:65162.10.1109/87.709500Suche in Google Scholar

28. LuJ, GuoY, ChenX. Establishment of aero-engine state variable model based on linear fitting method. J Aerosp Power2011;26:11727.Suche in Google Scholar

Received: 2014-11-19
Accepted: 2014-12-11
Published Online: 2015-1-7
Published in Print: 2015-9-1

©2015 by De Gruyter

Heruntergeladen am 4.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2014-0030/html
Button zum nach oben scrollen