Effect of the Axial Spacing between Vanes and Blades on a Transonic Gas Turbine Performance and Blade Loading
-
Dongil Chang
Dongil ChangDepartment of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 CanadaSearch for this author in:Stavros TavoularisSearch for this author in:
Abstract
Unsteady numerical simulations have been conducted to investigate the effect of axial spacing between the stator vanes and the rotor blades on the performance of a transonic, single-stage, high-pressure, axial turbine. Three cases were considered, the normal case, which is based on the geometry of a commercial jet engine and has an axial spacing at 50% blade span equal to 42% of the vane axial chord, as well as two other cases with axial spacings equal to 31 and 52% vane axial chords, respectively. Present interest has focused on the effect of axial gap size on the instantaneous and time-averaged flows as well as on the blade loading and the turbine performance. Decreasing the gap size reduced the pressure and increased the Mach number in the core flows in the gap region. However, the flows near the two endwalls did not follow monotonic trends with the gap size change; instead, the Mach numbers for both the small gap and the large gap cases were lower than that for the normal case. This Mach number decrease was attributed to increased turbulence due to the increased wake strength for the small gap case and an increased wake width for the large gap case. In all considered cases, large pressure fluctuations were observed in the front region of the blade suction side. These pressure fluctuations were strongest for the smaller spacing. The turbine efficiencies of the cases with the larger and smaller spacings were essentially the same, but both were lower than that of the normal case. The stator loss for the smaller spacing case was lower than the one for the larger spacing case, whereas the opposite was true for the rotor loss.
©[2013] by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms
- Effect of the Axial Spacing between Vanes and Blades on a Transonic Gas Turbine Performance and Blade Loading
- Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft
- Effects of Rotor Blade Scaling on High-Pressure Turbine Unsteady Loading
- The Use of Air Injection Nozzles for the Forced Excitation of Axial Compressor Blades
- Effect of Grid Generated Turbulence on Near Field Characteristics of Round Jets
- Study of Shock Wave Control by Suction & Blowing on a Highly-loaded Transonic Compressor Cascade
- Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup
- Study of Underexpanded Sonic Jets by Numerical Simulation
- Experimental and Numerical Study of Gap Size and Cooling Flow Rate Effects on Tip Flow of Gas Turbine Blade
- Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers
Articles in the same Issue
- Masthead
- Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms
- Effect of the Axial Spacing between Vanes and Blades on a Transonic Gas Turbine Performance and Blade Loading
- Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft
- Effects of Rotor Blade Scaling on High-Pressure Turbine Unsteady Loading
- The Use of Air Injection Nozzles for the Forced Excitation of Axial Compressor Blades
- Effect of Grid Generated Turbulence on Near Field Characteristics of Round Jets
- Study of Shock Wave Control by Suction & Blowing on a Highly-loaded Transonic Compressor Cascade
- Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup
- Study of Underexpanded Sonic Jets by Numerical Simulation
- Experimental and Numerical Study of Gap Size and Cooling Flow Rate Effects on Tip Flow of Gas Turbine Blade
- Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers