From marker features to multimodal fusion: a review of vision-based tactile sensor design and development
-
Ning Han
Abstract
Vision-based tactile sensors capture visual information from contact surfaces to perceive tactile signals. In recent years, these sensors have been widely used in robotic systems to enhance their tactile perception capabilities. To meet the demands of various application scenarios, numerous hardware designs for these sensors have been developed. This paper reviews the design and development of vision-based tactile sensors. Based on their sensing principles and implementation methods, we categorize existing sensors into three main types: Vision-based tactile sensors based on marked features, vision-based tactile sensors based on coating geometric features, and vision-tactile modality fusion sensors. For each type, we delve into the core technical challenges, existing solutions, and corresponding hardware implementation strategies. By summarizing the characteristics and solutions of existing sensors, this paper aims to provide researchers with a comprehensive reference to past studies and solutions, while also exploring potential future research directions.
Zusammenfassung
Bildverarbeitungsbasierte taktile Sensoren erfassen visuelle Informationen von Kontaktflächen, um taktile Signale wahrzunehmen. In den letzten Jahren wurden diese Sensoren häufig in Robotersystemen eingesetzt, um deren taktile Wahrnehmungsfähigkeiten zu verbessern. Um den Anforderungen der verschiedenen Anwendungsszenarien gerecht zu werden, wurden zahlreiche Hardware-Designs für diese Sensoren entwickelt. Dieser Beitrag gibt einen Überblick über das Design und die Entwicklung von bildverarbeitungsbasierten taktilen Sensoren. Basierend auf ihren Erfassungsprinzipien und Implementierungsmethoden kategorisieren wir die vorhandenen Sensoren in drei Haupttypen: Bildverarbeitungsbasierte taktile Sensoren, die auf markierten Merkmalen basieren, bildverarbeitungsbasierte taktile Sensoren, die auf geometrischen Beschichtungsmerkmalen basieren, und bildverarbeitungsbasierte taktile Modalitätsfusionssensoren. Für jeden Typ werden die wichtigsten technischen Herausforderungen, bestehende Lösungen und entsprechende Hardware-Implementierungsstrategien erläutert. Durch die Zusammenfassung der Merkmale und Lösungen bestehender Sensoren soll dieser Beitrag Forschern eine umfassende Referenz zu früheren Studien und Lösungen bieten und gleichzeitig mögliche zukünftige Forschungsrichtungen aufzeigen.
Funding source: Natural Science Foundation of Nanjing University of Posts and Telecommunications
Award Identifier / Grant number: NY224148
About the authors

Ning Han was born in 2001 in Ningxia, China. He is currently pursuing the M.S. degree in engineering from Nanjing University of Posts and Telecommunications. His research interests include robotic tactile perception and tactile sensors.

Shen Jingjin received the M.S. and Ph.D. degrees in mechanical and electrical engineering from the Nanjing University of Aeronautics and Astronautics, Nanjing, in 2008 and 2013, respectively. He is currently an Associate Professor with the Nanjing University of Posts and Telecommunications. His research areas include sensor and mechanics.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Not applicable.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY224148).
-
Data availability: Not applicable.
References
[1] B. Fang, et al.., “A dual-modal vision-based tactile sensor for robotic hand grasping,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Queensland, IEEE, 2018, pp. 4740–4745.10.1109/ICRA.2018.8461007Search in Google Scholar
[2] J. Feng and Q. Jiang, “Slip and roughness detection of robotic fingertip based on FBG,” Sens. Actuators, A, vol. 287, pp. 143–149, 2019. https://doi.org/10.1016/j.sna.2019.01.018.Search in Google Scholar
[3] E. Sotgiu, et al.., “Surface texture detection with a new sub-mm resolution flexible tactile capacitive sensor array for multimodal artificial finger,” J. Microelectromech. Syst., vol. 29, no. 21, pp. 629–636, 2020. https://doi.org/10.1109/jmems.2020.3004584.Search in Google Scholar
[4] W. Liu, P. Yu, C. Gu, X. Cheng, and X. Fu, “Fingertip piezoelectric tactile sensor array for roughness encoding under varying scanning velocity,” IEEE Sens. J., vol. 17, no. 21, pp. 6867–6879, 2017. https://doi.org/10.1109/jsen.2017.2721740.Search in Google Scholar
[5] W. Yuan, M. A. Srinivasan, and E. H. Adelson, “Estimating object hardness with a GelSight touch sensor,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, IEEE, 2016, pp. 208–215.Search in Google Scholar
[6] L. He, L. Tao, Z. Ma, X. Du, and W. Wan, “Cherry tomato firmness detection and prediction using a vision-based tactile sensor,” J. Food Meas. Charact., vol. 18, no. 2, pp. 1053–1064, 2024. https://doi.org/10.1007/s11694-023-02249-0.Search in Google Scholar
[7] Y. Mu, et al.., “All-printed flexible capacitive array tactile force sensors with tunable sensitivity and low crosstalk for micro motion detection,” Sens. Actuators, A, vol. 356, 2023, Art. no. 114337. https://doi.org/10.1016/j.sna.2023.114337.Search in Google Scholar
[8] H. Devaraj, et al.., “Highly elastic and flexible multi-layered carbon black/elastomer composite based capacitive sensor arrays for soft robotics,” Meas.: Sens., vols. 2–4, 2019, Art. no. 100004. https://doi.org/10.1016/j.measen.2020.100004.Search in Google Scholar
[9] T. Usui, H. Ishizuka, T. Kawasetsu, K. Hosoda, S. Ikeda, and O. Oshiro, “Soft capacitive tactile sensor using displacement of air-water interface,” Sens. Actuators, A, vol. 332, no. 1, 2021, Art. no. 113133. https://doi.org/10.1016/j.sna.2021.113133.Search in Google Scholar
[10] Y. H. Gao, Y. Q. Bi, J. H. Lang, and Q. Zhang, “Insights into theoretical and practical characteristics of capacitive flexible tactile sensor based on spherical surface plate,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 13, pp. 17182–17190, 2021. https://doi.org/10.1007/s10854-021-06181-1.Search in Google Scholar
[11] Y. Chen and H. Liu, “Location-dependent performance of large-area piezoresistive tactile sensors based on electrical impedance tomography,” IEEE Sens. J., vol. 21, no. 19, pp. 21622–21630, 2021. https://doi.org/10.1109/jsen.2021.3103988.Search in Google Scholar
[12] J. Feng, L. Chen, X. Li, and J. Zhang, “Highly sensitive piezoresistive sensors based on a voltage divider circuit with TFTs for ultra-low pressure detection,” IEEE J. Electron Devices Soc., vol. 9, no. 6, pp. 623–627, 2021. https://doi.org/10.1109/jeds.2021.3085135.Search in Google Scholar
[13] Y. Gong, X. Cheng, Z. Wu, Y. Liu, P. Yu, and X. Hu, “A flexible tactile sensor array for dynamic triaxial force measurement based on aligned piezoresistive nanofibers,” IEEE Sens. J., vol. 21, no. 19, pp. 21989–21998, 2021. https://doi.org/10.1109/jsen.2021.3103781.Search in Google Scholar
[14] F. Wang, et al.., “Modeling analysis and 3D force prediction of a novel piezoelectric tactile sensor,” J. Sens., vol. 2021, no. 1, 2021, Art. no. 3667833. https://doi.org/10.1155/2021/3667833.Search in Google Scholar
[15] R. Sun, et al.., “Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring,” Adv. Mater. Technol., vol. 4, no. 5, 2019, Art. no. 1900100. https://doi.org/10.1002/admt.201900100.Search in Google Scholar
[16] W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu, and Z. Yang, “Skin-inspired piezoelectric tactile sensor array with crosstalk-free Row+Column electrodes for spatiotemporally distinguishing diverse stimuli,” Advanced Science, vol. 8, no. 3, 2021, Art. no. 2002817. https://doi.org/10.1002/advs.202002817.Search in Google Scholar PubMed PubMed Central
[17] N. Bandari, J. Dargahi, and M. Packirisamy, “Image-based optical-fiber force sensor for minimally invasive surgery with ex-vivo validation,” J. Electrochem. Soc., vol. 167, no. 12, 2020, Art. no. 127504. https://doi.org/10.1149/1945-7111/aba6c4.Search in Google Scholar
[18] A. Padmanabha, F. Ebert, S. Tian, R. Calandra, C. Finn, and S. Levine, “Omnitact: a multi-directional high-resolution touch sensor,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 618–624.10.1109/ICRA40945.2020.9196712Search in Google Scholar
[19] N. F. Lepora, Y. Lin, B. Money-Coomes, and J. Lloyd, “DigiTac: a DIGIT-TacTip hybrid tactile sensor for comparing low-cost high-resolution robot touch,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 9382–9388, 2022. https://doi.org/10.1109/lra.2022.3190641.Search in Google Scholar
[20] S. Zhang, Y. Yang, Y. Sun, N. Liu, F. Sun, and B. Fang, “Artificial skin based on visuo-tactile sensing for 3D shape reconstruction: material, method, and evaluation,” Adv. Funct. Mater., vol. 35, no. 1, 2024, Art. no. 2411686. https://doi.org/10.1002/adfm.202411686.Search in Google Scholar
[21] M. Li, T. Li, and Y. Jiang, “Marker displacement method used in vision-based tactile sensors–from 2D to 3D: a review,” IEEE Sens. J., vol. 23, no. 8, pp. 8042–8059, 2023. https://doi.org/10.1109/jsen.2023.3255861.Search in Google Scholar
[22] W. Yuan, M. A. Srinivasan, and E. H. Adelson, “Estimating object hardness with a gelsight touch sensor,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 208–215.10.1109/IROS.2016.7759057Search in Google Scholar
[23] B. Fang, et al.., “Force measurement technology of vision-based tactile sensor,” Adv. Intell. Syst., vol. 7, no. 1, 2024, Art. no. 2400290. https://doi.org/10.1002/aisy.202400290.Search in Google Scholar
[24] S. Zhang, et al.., “Hardware technology of vision-based tactile sensor: a review,” IEEE Sens. J., vol. 22, no. 22, pp. 21410–21427, 2022. https://doi.org/10.1109/jsen.2022.3210210.Search in Google Scholar
[25] S. Herbort and C. Wöhler, “An introduction to image-based 3D surface reconstruction and a survey of photometric stereo methods,” 3D Research, vol. 2, no. 4, pp. 1–17, 2011. https://doi.org/10.1007/3dres.03(2011)4.Search in Google Scholar
[26] G. Obinata, A. Dutta, N. Watanabe, and N. Moriyama, “Vision based tactile sensor using transparent elastic fingertip for dexterous handling,” in Mobile Robots: Perception & Navigation, S. Kolski, Ed., Germany, ARS, Austria, Pro Literatur Verlag, 2007.10.5772/4771Search in Google Scholar
[27] B. Winstone, G. Griffiths, C. Melhuish, T. Pipe, and J. Rossiter, “Tactip — tactile fingertip device, challenges in reduction of size to ready for robot hand integration,” in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 160–166.10.1109/ROBIO.2012.6490960Search in Google Scholar
[28] N. F. Lepora, “Soft biomimetic optical tactile sensing with the TacTip: a review,” IEEE Sens. J., vol. 21, no. 19, pp. 21131–21143, 2021. https://doi.org/10.1109/jsen.2021.3100645.Search in Google Scholar
[29] N. F. Lepora and J. Lloyd, “Optimal deep learning for robot touch: training accurate pose models of 3d surfaces and edges,” IEEE Robot. Autom. Mag., vol. 27, no. 2, pp. 66–77, 2020. https://doi.org/10.1109/mra.2020.2979658.Search in Google Scholar
[30] M. Li, L. Zhang, T. Li, and Y. Jiang, “Continuous marker patterns for representing contact information in vision-based tactile sensor: principle, algorithm, and verification,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022. https://doi.org/10.1109/tim.2022.3196730.Search in Google Scholar
[31] G. Zhang, Y. Du, H. Yu, and M. Y. Wang, “DelTact: a vision-based tactile sensor using a dense color pattern,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 10778–10785, 2022. https://doi.org/10.1109/lra.2022.3196141.Search in Google Scholar
[32] W. K. Do, B. Jurewicz, and M. Kennedy, “DenseTact 2.0: optical tactile sensor for shape and force reconstruction,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, IEEE, 2023, pp. 12549–12555.10.1109/ICRA48891.2023.10161150Search in Google Scholar
[33] K. Kamiyama, K. Vlack, T. Mizota, H. Kajimoto, K. Kawakami, and S. Tachi, “Vision-based sensor for real-time measuring of surface traction fields,” IEEE Comput. Graph. Appl., vol. 25, no. 1, pp. 68–75, 2005. https://doi.org/10.1109/mcg.2005.27.Search in Google Scholar PubMed
[34] K. Sato, K. Kamiyama, H. Nii, N. Kawakami, and S. Tachi, “Measurement of force vector field of robotic finger using vision-based haptic sensor,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, 2008, pp. 488–493.10.1109/IROS.2008.4650712Search in Google Scholar
[35] C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928, 2019. https://doi.org/10.3390/s19040928.Search in Google Scholar PubMed PubMed Central
[36] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Towards vision-based robotic skins: a data-driven, multi-camera tactile sensor,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, IEEE, 2020, pp. 333–338.10.1109/RoboSoft48309.2020.9116060Search in Google Scholar
[37] W. Fan, H. Li, and D. Zhang, “MagicTac: a novel high-resolution 3D multi-layer grid-based tactile sensor,” in 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024, pp. 388–394.10.1109/ICRA57147.2024.10610615Search in Google Scholar
[38] X. Lin and M. Wiertlewski, “Sensing the frictional state of a robotic skin via subtractive color mixing,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2386–2392, 2019. https://doi.org/10.1109/lra.2019.2893434.Search in Google Scholar
[39] X. Lin, L. Willemet, A. Bailleul, and M. Wiertlewski, “Curvature sensing with a spherical tactile sensor using the color-interference of a marker array,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, IEEE, 2020, pp. 603–609.10.1109/ICRA40945.2020.9197050Search in Google Scholar
[40] Z. Lu, et al.., “TacShade: a new 3D-printed soft optical tactile sensor based on light, shadow and greyscale for shape reconstruction,” in 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, IEEE, 2024, pp. 17153–17159.10.1109/ICRA57147.2024.10610508Search in Google Scholar
[41] D. Baimukashev, Z. Kappassov, and H. A. Varol, “Shear, torsion and pressure tactile sensor via plastic optofiber guided imaging,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2618–2625, 2020. https://doi.org/10.1109/lra.2020.2972876.Search in Google Scholar
[42] Q. Duan, Q. Zhang, Z. Liu, and Y. Ou, “Effect of pattern on the resolution of the visual-tactile sensor,” in 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, IEEE, 2022, pp. 970–975.10.1109/ROBIO55434.2022.10011877Search in Google Scholar
[43] H. Sun, K. J. Kuchenbecker, and G. Martius, “A soft thumb-sized vision-based sensor with accurate all-round force perception,” Nat. Mach. Intell., vol. 4, no. 2, pp. 135–145, 2022. https://doi.org/10.1038/s42256-021-00439-3.Search in Google Scholar
[44] I. Andrussow, H. Sun, K. J. Kuchenbecker, and G. Martius, “Minsight: a fingertip-sized vision-based tactile sensor for robotic manipulation,” Adv. Intell. Syst., vol. 5, no. 8, 2023. https://doi.org/10.1002/aisy.202370035.Search in Google Scholar
[45] Y. Qiu, et al.., “A tactile perception method with flexible grating structural color,” Natl. Sci. Rev., vol. 12, no. 1, 2024. https://doi.org/10.1093/nsr/nwae413.Search in Google Scholar PubMed PubMed Central
[46] I. Huang, J. Liu, and R. Bajcsy, “A depth camera-based soft fingertip device for contact region estimation and perception-action coupling,” in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, IEEE, 2019, pp. 8443–8449.10.1109/ICRA.2019.8793612Search in Google Scholar
[47] F. Baghaei Naeini, et al.., “A novel dynamic-vision-based approach for tactile sensing applications,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 1881–1893, 2020. https://doi.org/10.1109/tim.2019.2919354.Search in Google Scholar
[48] T. Zhang, Y. Cong, X. Li, and Y. Peng, “Robot tactile sensing: vision based tactile sensor for force perception,” in 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, IEEE, 2018, pp. 1360–1365.10.1109/CYBER.2018.8688163Search in Google Scholar
[49] S. Cui, R. Wang, J. Hu, J. Wei, S. Wang, and Z. Lou, “In-Hand object localization using a novel high-resolution visuotactile sensor,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6015–6025, 2022. https://doi.org/10.1109/tie.2021.3090697.Search in Google Scholar
[50] J. Hu, et al.., “GelStereo palm: a novel curved visuotactile sensor for 3-D geometry sensing,” IEEE Trans. Ind. Inform., vol. 19, no. 11, pp. 10853–10863, 2023. https://doi.org/10.1109/tii.2023.3241685.Search in Google Scholar
[51] J. Hu, S. Cui, S. Wang, R. Wang, and Y. Wang, “Active shape reconstruction using a novel visuotactile palm sensor,” Biomimetic Intell. Rob., vol. 4, no. 3, 2024, Art. no. 100167. https://doi.org/10.1016/j.birob.2024.100167.Search in Google Scholar
[52] L. V. Duong, “BiTac: a soft vision-based tactile sensor with bidirectional force perception for robots,” IEEE Sens. J., vol. 23, no. 9, pp. 9158–9167, 2023. https://doi.org/10.1109/jsen.2023.3257645.Search in Google Scholar
[53] L. Zhang, Y. Wang, and Y. Jiang, “Tac3d: a novel vision-based tactile sensor for measuring forces distribution and estimating friction coefficient distribution,” CoRR, vol. abs/2202.06211, 2022.Search in Google Scholar
[54] M. K. Johnson and E. H. Adelson, “Retrographic sensing for the measurement of surface texture and shape,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1070–1077.10.1109/CVPRW.2009.5206534Search in Google Scholar
[55] A. C. Abad and A. Ranasinghe, “Low-cost GelSight with UV markings: feature extraction of objects using AlexNet and optical flow without 3D image reconstruction,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 3680–3685.10.1109/ICRA40945.2020.9197264Search in Google Scholar
[56] W. Kim, W. D. Kim, J.-J. Kim, C.-H. Kim, and J. Kim, “UVtac: switchable UV marker-based tactile sensing finger for effective force estimation and object localization,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 6036–6043, 2022. https://doi.org/10.1109/lra.2022.3163450.Search in Google Scholar
[57] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “GelSlim: a high-resolution, compact, robust, and calibrated tactile-sensing finger,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, IEEE, 2018, pp. 1927–1934.10.1109/IROS.2018.8593661Search in Google Scholar
[58] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense tactile force estimation using gelslim and inverse fem,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 5418–5424.10.1109/ICRA.2019.8794113Search in Google Scholar
[59] I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: high-resolution measurement of shape, force and slip in a compact tactile-sensing finger,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 10781–10787.10.1109/ICRA46639.2022.9811832Search in Google Scholar
[60] S. Wang, Y. She, B. Romero, and E. Adelson, “GelSight wedge: measuring high-resolution 3D contact geometry with a compact robot finger,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, IEEE, 2021, pp. 6468–6475.10.1109/ICRA48506.2021.9560783Search in Google Scholar
[61] B. Romero, F. Veiga, and E. Adelson, “Soft, round, high resolution tactile fingertip sensors for dexterous robotic manipulation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, IEEE, 2020, pp. 4796–4802.10.1109/ICRA40945.2020.9196909Search in Google Scholar
[62] D. F. Gomes, Z. Lin, and S. Luo, “GelTip: a finger-shaped optical tactile sensor for robotic manipulation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, IEEE, 2020, pp. 9903–9909.10.1109/IROS45743.2020.9340881Search in Google Scholar
[63] O. Azulay, et al.., “AllSight: a low-cost and high-resolution round tactile sensor with zero-shot learning capability,” IEEE Robot. Autom. Lett., vol. 9, no. 1, pp. 483–490, 2024. https://doi.org/10.1109/lra.2023.3333701.Search in Google Scholar
[64] S. Q. Liu and E. H. Adelson, “GelSight Fin ray: incorporating tactile sensing into a soft compliant robotic gripper,” in 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, United Kingdom, IEEE, 2022, pp. 925–931.10.1109/RoboSoft54090.2022.9762175Search in Google Scholar
[65] S. Q. Liu, Y. Ma, and E. H. Adelson, “GelSight Baby Fin ray: a compact, compliant, flexible finger with high-resolution tactile sensing,” in 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, Singapore, IEEE, 2023, pp. 1–8.10.1109/RoboSoft55895.2023.10122078Search in Google Scholar
[66] Y. Gao, S. Zhang, W. Wan, B. Fang, F. Sun, and K. Harada, “Development of a miniature photometric vision-based tactile sensor,” IEEE Sens. J., vol. 24, no. 20, pp. 32053–32064, 2024. https://doi.org/10.1109/jsen.2024.3452768.Search in Google Scholar
[67] W. K. Do and M. Kennedy, “DenseTact: optical tactile sensor for dense shape reconstruction,” in 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, IEEE, 2022, pp. 6188–6194.10.1109/ICRA46639.2022.9811966Search in Google Scholar
[68] K. Althoefer, Y. Ling, W. Li, X. Qian, W. W. Lee, and P. Qi, “A miniaturised camera-based multi-modal tactile sensor,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, IEEE, 2023, pp. 12570–12575.10.1109/ICRA48891.2023.10160634Search in Google Scholar
[69] M. H. Tippur and E. H. Adelson, “GelSight360: an omnidirectional camera-based tactile sensor for dexterous robotic manipulation,” arXiv:2304.04268, pp. 1–8, 2023. https://doi.org/10.1109/robosoft55895.2023.10122097.Search in Google Scholar
[70] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and optical tactile sensing: reducing and handling errors while cutting vegetables,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, IEEE, 2016, pp. 1045–1051.10.1109/HUMANOIDS.2016.7803400Search in Google Scholar
[71] Q. Wang, Y. Du, and M. Y. Wang, “SpecTac: a visual-tactile dual-modality sensor using UV illumination,” in 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, IEEE, 2022, pp. 10844–10850.10.1109/ICRA46639.2022.9812348Search in Google Scholar
[72] F. R. Hogan, M. Jenkin, S. Rezaei-Shoshtari, Y. Girdhar, D. Meger, and G. Dudek, “Seeing through your skin: recognizing objects with a novel visuotactile sensor,” arXiv:2011.09552, 2020.10.1109/WACV48630.2021.00126Search in Google Scholar
[73] S. Zhang, et al.., “TIRgel: a visuo-tactile sensor with total internal reflection mechanism for external observation and contact detection,” IEEE Robot. Autom. Lett., vol. 8, no. 10, pp. 6307–6314, 2023. https://doi.org/10.1109/lra.2023.3306670.Search in Google Scholar
[74] A. Yamaguchi, “FingerVision with whiskers: light touch detection with vision-based tactile sensors,” in 2021 Fifth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, IEEE, 2021, pp. 56–64.10.1109/IRC52146.2021.00015Search in Google Scholar
[75] W. Fan, H. Li, W. Si, S. Luo, N. Lepora, and D. Zhang, “ViTacTip: design and verification of a novel biomimetic physical vision-tactile fusion sensor,” in 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, IEEE, 2024, pp. 1056–1062.10.1109/ICRA57147.2024.10611186Search in Google Scholar
[76] F. R. Hogan, J.-F. Tremblay, B. H. Baghi, M. Jenkin, K. Siddiqi, and G. Dudek, “Finger-STS: combined proximity and tactile sensing for robotic manipulation,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 10865–10872, 2022. https://doi.org/10.1109/lra.2022.3191812.Search in Google Scholar
[77] S. Athar, G. Patel, Z. Xu, Q. Qiu, and Y. She, “VisTac toward a unified multimodal sensing finger for robotic manipulation,” IEEE Sens. J., vol. 23, no. 20, pp. 25440–25450, 2023. https://doi.org/10.1109/jsen.2023.3310918.Search in Google Scholar
[78] E. Roberge, G. Fornes, and J.-P. Roberge, “StereoTac: a novel visuotactile sensor that combines tactile sensing with 3D vision,” IEEE Robot. Autom. Lett., vol. 8, no. 10, pp. 6291–6298, 2023. https://doi.org/10.1109/lra.2023.3304560.Search in Google Scholar
[79] Q. K. Luu, D. Q. Nguyen, N. H. Nguyen, and V. A. Ho, “Soft robotic link with controllable transparency for vision-based tactile and proximity sensing,” in 2023 IEEE International Conference on Soft Robotics (RoboSoft), 2023, pp. 1–6.10.1109/RoboSoft55895.2023.10122059Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- 6. Workshop ,,Messtechnische Anwendungen von Ultraschall“ vom 17. bis 19. Juni 2024 im Kloster Drübeck
- Research Articles Focus Section
- Estimation of piezoelectric material parameters of ring-shaped specimens
- Phased-Array basiertes Structural Health Monitoring zur Delaminationserkennung bei Mehrschichtsystemen
- Luftgekoppelter Ultraschall für die Prüfung des Alterungszustandes von Klebeverbindungen
- Sensitivity analysis of piezoelectric material parameters using Sobol indices
- Research Articles
- Investigations on anelastic effects in electrical discharge machined titan grade 2 flexures for the use in precision force instruments
- 2D image-based electrical contact surface degradation and its health assessment
- Review Article
- From marker features to multimodal fusion: a review of vision-based tactile sensor design and development
Articles in the same Issue
- Frontmatter
- Editorial
- 6. Workshop ,,Messtechnische Anwendungen von Ultraschall“ vom 17. bis 19. Juni 2024 im Kloster Drübeck
- Research Articles Focus Section
- Estimation of piezoelectric material parameters of ring-shaped specimens
- Phased-Array basiertes Structural Health Monitoring zur Delaminationserkennung bei Mehrschichtsystemen
- Luftgekoppelter Ultraschall für die Prüfung des Alterungszustandes von Klebeverbindungen
- Sensitivity analysis of piezoelectric material parameters using Sobol indices
- Research Articles
- Investigations on anelastic effects in electrical discharge machined titan grade 2 flexures for the use in precision force instruments
- 2D image-based electrical contact surface degradation and its health assessment
- Review Article
- From marker features to multimodal fusion: a review of vision-based tactile sensor design and development