Startseite Laser-Doppler-Anemometrie-Messungen in einem quadratischen Kanal mit eng beieinanderliegenden Rippen an einer Wand
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Laser-Doppler-Anemometrie-Messungen in einem quadratischen Kanal mit eng beieinanderliegenden Rippen an einer Wand

  • Sebastian Ruck

    Sebastian Ruck is a researcher engineer and lecture in the flied of thermal fluid dynamics at the Institute for Neutron Physics and Reactor Technology of the Karlsruhe Institute of Technology. He studied mechanical engineering at the University of Karlsruhe and received his Dr.-Ing. in aerodynamics and fluid-structure-interaction from the mechanical engineering faculty of the Karlsruhe Institute of Technology in 2010. His research interests and activities are turbulent flows and heat transfer, measurement techniques and numerical simulation methods. Dr.-Ing. Ruck is currently working on the design of efficient cooling components for high heat flux applications in the thermal energy environment.

    ORCID logo EMAIL logo
    , Frederik Arbeiter

    Dr.-Ing. Frederik Arbeiter graduated in mechanical engineering at the Technical University of Karlsruhe in 2003. He is now head of the group Measurements and Experimental Techniques at the Institute for Neutron Physics and Reactor of Technology of the Karlsruhe Institute of Technology, where he works in the development of irradiation experiments and technologies for fusion reactor blankets. His main scientific areas are experimental and modelling activities for fluid dynamics, heat and mass transfer, complemented by investigations on neutron irradiated materials.

    und Torben Petri

    Torben Petri is a master student at the Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology. He is investigating the flow topology of rib-roughened channels by Laser-Doppler-Anemometry.

Veröffentlicht/Copyright: 2. Februar 2022

Zusammenfassung

In der vorliegenden Arbeit werden Ergebnisse von Laser-Doppler-Anemometrie (LDA)-Geschwindigkeitsmessungen in einem einseitig mit transversal orientierten Rippen-Rauheiten strukturierten quadratischen Kanal für die Strömung mit einer Reynolds-Zahl von Re H = 5 , 0 · 10 4 vorgestellt. Das Rippenabstand-Rippenhöhe-Verhältnis war 3 und die Verblockungsrate betrug 6 , 7 %. Es werden Verteilungen der mittleren Geschwindigkeiten, Reynolds-Spannungen sowie Triple-Geschwindigkeit-Korrelationen präsentiert. Die Ergebnisse zeigen die Entwicklung einer dreidimensionalen Sekundärströmung oberhalb der Rippen, wodurch sich ein schwach advektiver wandnormaler Fluidtransport zwischen der rippennahen Strömung und der Kanalkernströmung einstellt. Der Einfluss der Rippen-Rauheiten auf das turbulente Strömungsgeschehen und die einhergehenden turbulenten Austauschvorgänge ist jedoch auf die unmittelbare Rippennähe begrenzt. Die anhand der statistischen Momente höherer Ordnung beschriebenen rippeninduzierten instationären Strömungsvorgänge sowie der diffusive Transport treten oberhalb der Rippen nur in einem schmalen Band auf.

Abstract

The present study reports on results of Laser-Doppler-Anemometry (LDA) velocity measurements in a one-sided rib-roughened square channel with a rib-pitch-to-rib-height ratio of 3 and a rib blockage ratio of 6.7 % at a Reynolds number of 5.0 · 10 4 . Distributions of the mean velocities, Reynolds stresses, and triple velocity correlations are presented. The results show the development of a three-dimensional secondary flow above the ribs resulting in a weakly advective wall-normal fluid transport between the near-rib flow and the channel core flow. However, the effect of the rib roughness on the turbulent flow and the accompanying turbulent exchange is limited to the immediate vicinity of the ribs. The rib induced unsteady flow processes and the diffusive transport, both derived from higher-order statistical moments, occur only in a narrow band above the ribs.

Über die Autoren

Sebastian Ruck

Sebastian Ruck is a researcher engineer and lecture in the flied of thermal fluid dynamics at the Institute for Neutron Physics and Reactor Technology of the Karlsruhe Institute of Technology. He studied mechanical engineering at the University of Karlsruhe and received his Dr.-Ing. in aerodynamics and fluid-structure-interaction from the mechanical engineering faculty of the Karlsruhe Institute of Technology in 2010. His research interests and activities are turbulent flows and heat transfer, measurement techniques and numerical simulation methods. Dr.-Ing. Ruck is currently working on the design of efficient cooling components for high heat flux applications in the thermal energy environment.

Frederik Arbeiter

Dr.-Ing. Frederik Arbeiter graduated in mechanical engineering at the Technical University of Karlsruhe in 2003. He is now head of the group Measurements and Experimental Techniques at the Institute for Neutron Physics and Reactor of Technology of the Karlsruhe Institute of Technology, where he works in the development of irradiation experiments and technologies for fusion reactor blankets. His main scientific areas are experimental and modelling activities for fluid dynamics, heat and mass transfer, complemented by investigations on neutron irradiated materials.

Torben Petri

Torben Petri is a master student at the Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology. He is investigating the flow topology of rib-roughened channels by Laser-Doppler-Anemometry.

Literatur

1. M. R. Raupach, R. A. Antonia, and S. Rajagopalan. Rough-Wall Turbulent Boundary Layers. Appl. Mech. Rev., 44(1):1–25, 1991. 10.1115/1.3119492.Suche in Google Scholar

2. A. E. Perry, W. H. Schofield, and P. N. Joubert. Rough wall turbulent boundary layers. J. Fluid Mech., 37(2):383–413, 1969. 10.1017/S0022112069000619.Suche in Google Scholar

3. L. Keirsbulck, L. Labraga, A. Mazouz, and C. Tournier. Surface Roughness Effects on Turbulent Boundary Layer Structures. J. Fluids Eng., 124(1):127–135, 2002. 10.1115/1.1445141.Suche in Google Scholar

4. S. Leonardi, P. Orlandi, L. Djenidi, and R. A. Antonia. Structure of turbulent channel flow with square bars on one wall. Int. J. Heat Fluid Flow, 25(3):384–392, 2004. 10.1016/j.ijheatfluidflow.2004.02.022.Suche in Google Scholar

5. P. A. Krogstad, H. I. Andersson, O. M. Bakken, and A. Asharafian. An experimental and numerical study of channel flow with rough walls. J. Fluid Mech., 530:327–352, 2005. 10.1017/S0022112005003824.Suche in Google Scholar

6. T. Ikeda and P. Durbin. Direct simulations of a rough-wall channel flow. J. Fluid Mech., 571:235–263, 2007. 10.1017/S002211200600334X.Suche in Google Scholar

7. I. Tani. Turbulent Boundary Layer Development over Rough Surfaces. In Meier H. U. and Bradshaw P., editors, Perspectives in Turbulence Studies. Volume 3: Turbo Expo 2004, pages 223–249. Springer, Berlin, Heidelberg, 1987. 10.1007/978-3-642-82994-9_9.Suche in Google Scholar

8. H. W. Townes and R. H. Sabersky. Experiments on the flow over a rough surface. Int. J. HeatMass Transf., 9(8):729–738, 1966. 10.1016/0017-9310(66)90002-0.Suche in Google Scholar

9. L. Djenidi, R. A. Antonia, and F. Anselmet. LDA measurements in a turbulent boundary layer over a d-type rough wall. Exp. Fluids, 16:323–329, 1994. 10.1007/BF00195431.Suche in Google Scholar

10. P. R. Bandyopadhyay and R. D. Watson. Structure of rough-wall turbulent boundary layers. Phys. Fluids, 31(7):1877–1883, 1988. https://aip.scitation.org/doi/abs/10.1063/1.866686.Suche in Google Scholar

11. S. Ruck and F. Arbeiter. LDA measurements in a one-sided ribbed square channel at Reynolds numbers of 50,000 and 100,000. Exp. Fluids, 62:232, 2021. 10.1007/s00348-021-03313-5.Suche in Google Scholar

12. S. Ruck, F. Arbeiter, T. Petri, and G. Schlindwein. LDA-Messungen in einem einseitig berippten Kanal bei Reynolds-Zahlen von Re≥ 50 000. In A. Fischer, D. Stöbener, C. Vanselow, B. Ruck, and A. Leder, editors, Tagungsband Experimentelle Strömungsmachnik, pages 20.1–20.10. Deutsche Gesellschaft für Laser-Anemometrie GALA e. V., Bremen, 2021.Suche in Google Scholar

13. S. Ruck and F. Arbeiter. Measurements of Turbulent Transport in a Square Channel with One Ribbed Wall. J. Fluids Eng., 2022. 10.1115/1.4053442.Suche in Google Scholar

14. W. K. George, P. D. Beuther, and J. L. Lumley. Processing of Random Signals. In B. W. Hansen, editor, Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows, pages 757–800, 1978.10.1007/978-94-009-9565-9_43Suche in Google Scholar

15. H. Nobach and C. Tropea. Fundamentals of data processing. In C. Tropea, A. L. Yarin, and J. F. Foss, editors, Handbook of Experimental Fluid Mechanics, chapter 23. Springer-Verlag, Berlin Heidelberg, 2007. 10.1007/978-3-540-30299-5.Suche in Google Scholar

16. L. Benedict and R. Gould. Towards better uncertainty estimates for turbulence statistics. Exp. Fluids, 22:129–136, 1996. 10.1007/s003480050030.Suche in Google Scholar

17. H. Tennekes and J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge, Massachusetts and London, 1972.10.7551/mitpress/3014.001.0001Suche in Google Scholar

18. S. Okamoto, S. Seo, K. Nakaso, and I. Kawai. Turbulent Shear Flow and Heat Transfer Over the Repeated Two Dimensional Square Ribs on Ground Plane. J. Fluids Eng., 115(4):631–637, 1993. 10.1115/1.2910191.Suche in Google Scholar

19. J. Cui, V. C. Patel, and C.-L. Lin. Large-eddy simulation of turbulent flow in a channel with rib roughness. Int. J. Heat Fluid Flow, 24(3):372–388, 2003. 10.1016/S0142-727X(03)00002-X.Suche in Google Scholar

20. S. Leonardi, P. Orlandi, R. Smalley, L. Djenidi, and R. A. Antonia. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech., 491:229–238, 2003. 10.1017/S0022112003005500.Suche in Google Scholar

21. S. Leonardi, P. Orlandi, and R. A. Antonia. Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids, 19(12): 125101, 2007. 10.1063/1.2821908.Suche in Google Scholar

22. H. Fujita, H. Yokosawa, and M. Hirota. Secondary flow of the second kind in rectangular ducts with one rough wall. Exp. Therm. Fluid Sci., 2(1):72–80, 1989. 10.1016/0894-1777(89)90051-4.Suche in Google Scholar

23. M. Hirota, H. Yokosawa, and H. Fujita. Turbulence kinetic energy in turbulent flows through square ducts with rib-roughened walls. Int. J. Heat Fluid Flow, 13(1):22–29, 1992. 10.1016/0142-727X(92)90056-F.Suche in Google Scholar

24. J. Andreopoulos and P. Bradshaw. Measurements of turbulence structure in the boundary layer on a rough surface. Bound.-Layer Meteorol., 20:201–213, 1981. 10.1007/BF00119902.Suche in Google Scholar

25. P. Å. Krogstadt and R. Antonia. Surface roughness effects in turbulent boundary layers. Exp. Fluids, 27:450–460, 1999. 10.1007/s003480050370.Suche in Google Scholar

26. K. A. Flack, M. P. Schultz, and J. S. Connelly. Examination of a critical roughness height for outer layer similarity. Physics of Fluids, 19(9): 095104, 2007. 10.1063/1.2757708.Suche in Google Scholar

Erhalten: 2021-12-01
Angenommen: 2022-01-13
Online erschienen: 2022-02-02
Erschienen im Druck: 2022-03-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0121/html?lang=de&srsltid=AfmBOoqTfXgUYpsrBzVrqcSNmAbc11T1d15zfUZ2S4r-uVHxwde3uH_G
Button zum nach oben scrollen