Home Stitched open-loop measurements with a focal-distance-modulated confocal sensor
Article
Licensed
Unlicensed Requires Authentication

Stitched open-loop measurements with a focal-distance-modulated confocal sensor

  • Janik Schaude

    Janik Schaude has been a research associate at the Institute of Manufacturing Metrology since 2017. Since 2020, he is head of the institute’s calibration laboratory. His main fields of research are nanometrology, atomic force microscopy and optical metrology.

    EMAIL logo
    , Andreas Christian Gröschl

    Andreas Christian Gröschl has been a research associate at the Institute of Manufacturing Metrology since 2012. From 2015 to 2020, he was head of the institute’s calibration laboratory. His main fields of research are optical and nano metrology.

    ORCID logo
    and Tino Hausotte

    Tino Hausotte is professor and head of the Institute of Manufacturing Metrology. His areas of research are X-ray computed tomography in dimensional metrology, coordinate and surface metrology, micro- and nanometrology, photogrammetry and numerical measurement uncertainty evaluation.

Published/Copyright: May 5, 2021

Abstract

The article presents measurements with a high-speed focal-distance modulated fibre-coupled confocal sensor integrated into a nano measuring machine (NMM-1). Combined with an appropriate signal processing, this axial beam modulating sensor yields a linear characteristic curve within a range of about 600 nm. This characteristic curve enables scans in closed-loop constant distance mode, where the controller of the NMM-1 keeps the distance between the measured surface and the sensor constant. Therefore, only one lateral scan is necessary to measure a given topography. Nevertheless, it is also possible to conduct open-loop constant height measurements on discrete heights. The axial offset between the heights needs to be only slightly less than the measuring range of the sensor, leading to a great reduction of the number of needed lateral scans to measure a given topography compared to a conventional confocal sensor, where the axial offset for a similar optical system is typically about 50 nm. To combine the scans taken at different heights, it is possible to stitch them using overlapping measuring points taken at two adjacent heights. Within this article, measurements are conducted on a roughness standard in closed-loop constant distance and in open-loop constant height mode, where the latter are evaluated with and without the application of the stitching algorithm.

Zusammenfassung

In diesem Artikel werden Messungen mit einem hochfrequent fokusabstandsmodulierten, fasergekoppelten Konfokalsensor, welcher in eine Nanomessmaschine (NMM-1) integriert ist, vorgestellt. Kombiniert mit einer geeigneten Signalauswertung liefert dieser Sensor eine lineare Kennlinie innerhalb eines Bereichs von ca. 600 nm. Durch diese werden axial geregelte Scans ermöglicht, bei welchen der Controller der NMM-1 den Abstand zwischen der Messobjektoberfläche und dem Sensor konstant hält. Somit genügt ein lateraler Scan, um eine gegebene Oberfläche zu messen. Weiterhin können ungeregelte laterale Scans auf diskreten Höhen durchgeführt werden, wobei der axiale Offset nur geringfügig kleiner als der Messbereich des Sensors zu sein braucht. Hierdurch reduziert sich die Anzahl notwendiger lateraler Scans zur Messung einer gegebenen Topografie im Vergleich zu einem konventionellen Konfokalsensor, bei welchem der axiale Offset bei einem vergleichbaren optischen System typischerweise etwa 50 nm berägt, ganz erheblich. Um die auf unterschiedlichen Höhen aufgenommenen Scans miteinander zu kombinieren, können wiederum überlappende Messpunkte, welche auf zwei benachbarten Höhen gemessen wurden, für ein Stitching herangezogen werden. In diesem Artikel werden Messungen auf einem Raunormal in beiden Betriebsmodi durchgeführt. Die ungeregelten Messungen werden mit und ohne die Anwendung des Stitching-Algorithmus ausgewertet.

Funding statement: The authors wish to thank the German Research Foundation (DFG) for funding the project “Focus distance modulated fibre-coupled confocal sensor for surface metrology” (HA 5915/10-1).

About the authors

Janik Schaude

Janik Schaude has been a research associate at the Institute of Manufacturing Metrology since 2017. Since 2020, he is head of the institute’s calibration laboratory. His main fields of research are nanometrology, atomic force microscopy and optical metrology.

Andreas Christian Gröschl

Andreas Christian Gröschl has been a research associate at the Institute of Manufacturing Metrology since 2012. From 2015 to 2020, he was head of the institute’s calibration laboratory. His main fields of research are optical and nano metrology.

Prof. Dr.-Ing. habil. Tino Hausotte

Tino Hausotte is professor and head of the Institute of Manufacturing Metrology. His areas of research are X-ray computed tomography in dimensional metrology, coordinate and surface metrology, micro- and nanometrology, photogrammetry and numerical measurement uncertainty evaluation.

  1. Author contributions: JS led the editing and review process and contributed data curation, formal analysis, investigation, methodology, supervision, validation, visualisation and writing of the original draft. AG contributed to formal analysis, investigation, methodology, visualisation and the review process. TH had the project administration and was responsible for the conceptualisation, methodology, funding acquisition, and the idea for the focal-distance-modulated confocal sensor. Additionally TH supported the review process.

References

1. R. Artigas. Imaging confocal microscopy. Optical Measurement of Surface Topography, 14 (11): 237–286, 2011.10.1007/978-3-642-12012-1_11Search in Google Scholar

2. F. G. Balzer, U. Gerhardt, T. Hausotte, K. Albrecht, E. Manske, and G. Jäger. Application of a novel fibre-coupled confocal sensor in a nanopositioning and nanomeasuring machine. In Proc. 12th euspen Int. Conf., 2012.Search in Google Scholar

3. J. Belkner, M. Hofmann, J. Kirchner, and E. Manske. Demonstration of aberration-robust high-frequency modulated Differential Confocal Microscopy with an oscillating Pinhole. In Proc. SPIE, volume 11352, 2020.10.1117/12.2555558Search in Google Scholar

4. M. Duocastella, G. Vicidomini, and A. Diaspro. Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Optics Express, 22 (16), 2014.10.1364/OE.22.019293Search in Google Scholar PubMed

5. European Norm. EN ISO 25178-602:2010. Geometrical product specification (GPS) – Surface texture: Areal – Part 602: Nominal characteristics of non-contact (confocal chromatic probe) instruments, 2010.Search in Google Scholar

6. European Norm. EN ISO 25178-607:2019. Geometrical product specification (GPS) – Surface texture: Areal – Part 607: Nominal characteristics of non-contact (confocal microscopy) instruments, 2019.Search in Google Scholar

7. S. Gao, M. Lu, W. Li, Y. Shi, and Q. Li. Metrological atomic force microscope and traceable measurement of nano-dimension structures. ACTA IMEKO, 2 (1): 12–15, 2013.10.21014/acta_imeko.v2i1.41Search in Google Scholar

8. A. Gröschl, S. Köhnen, J. Schaude, and T. Hausotte. Improvements of a high-speed focus distance modulated fibrecoupled confocal sensor for nanocoordinate measuring systems. In Sensors and Measuring Systems; 19th ITG/GMA-Symposium, pages 98–101. VDE, 2018.Search in Google Scholar

9. A. Gröschl, J. Schaude, and T. Hausotte. Kontinuierliche laterale Abtastung von Oberflächen durch axiale Regelung des Arbeitsabstandes in einem Nanokoordinatenmessgerät mit einem hochfrequent fokusabstandsmodulierten, fasergekoppelten, konfokalen Punktsensor. tm - Tech. Mess., 85 (S1): 26–32, 2018.10.1515/teme-2018-0040Search in Google Scholar

10. A. C. Gröschl, J. Schaude, and T. Hausotte. Evaluation und Korrektur thermischer Driften eines hochfrequent fokusabstandsmodulierten, fasergekoppelten konfokalen Punktsensors. tm - Tech. Mess., 86 (S1): 117–121, 2019.10.1515/teme-2019-0060Search in Google Scholar

11. A. Harasaki and J. C. Wyant. Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl. Opt., 39 (13): 2101–2106, 2000.10.1364/AO.39.002101Search in Google Scholar PubMed

12. T. Hausotte. Interferometric measuring systems of nanopositioning and nanomeasuring machines. In Proc. SPIE, volume 10678, 2018.10.1117/12.2318309Search in Google Scholar

13. T. Hausotte, B. Percle, and G. Jäger. Advanced three-dimensional scan methods in the nanopositioning and nanomeasuring machine. Meas. Sci. Technol., 20 (8): 084004, 2009.10.1088/0957-0233/20/8/084004Search in Google Scholar

14. T. Hausotte, A. Gröschl, and J. Schaude. High-speed focal-distance-modulated fiber-coupled confocal sensor for coordinate measuring systems. Appl. Opt., 57 (14): 3907–3914, 2018.10.1364/AO.57.003907Search in Google Scholar PubMed

15. S. Kang, M. Duocastella, and C. B. Arnold. Variable optical elements for fast focus control. Nature Photonics, 14: 533–542, 2020.10.1038/s41566-020-0684-zSearch in Google Scholar

16. N. Koukourakis, M. Finkeldey, M. Stürmer, C. Leithold, N. C. Gerhardt, M. R. Hofmann, U. Wallrabe, J. W. Czarske, and A. Fischer. Axial scanning in confocal microscopy employing adaptive lenses (CAL). Optics Express, 22 (5), 2014.10.1364/OE.22.006025Search in Google Scholar PubMed

17. F. Mauch, W. Lyda, M. Gronle, and W. Osten. Improved signal model for confocal sensors accounting for object depending artifacts. Optics Express, 20 (18): 19936–19945, 2012.10.1364/OE.20.019936Search in Google Scholar PubMed

18. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Optics Letters, 33 (18): 2146–2148, 2008.10.1364/OL.33.002146Search in Google Scholar

19. M. Minsky. Microscopy apparatus, 1961. US Patent 3,013,467.Search in Google Scholar

20. M. Rahlves, B. Roth, and E. Reithmeier. Systematic errors on curved microstructures caused by aberrations in confocal surface metrology. Optics Express, 23 (8): 9640–9648, 2015.10.1364/OE.23.009640Search in Google Scholar PubMed

21. J. Schaude, A. C. Gröschl, and T. Hausotte. Large range closed-loop scans with a focal-distance-modulated confocal sensor. Procedia CIRP, 94: 785–790, 2020.10.1016/j.procir.2020.09.131Search in Google Scholar

22. VDI/VDE. VDI/VDE 2617-6.2:2021. Accuracy of coordinate measuring machines; Characteristics and their testing; Guideline for the application of DIN EN ISO 10360-8 to coordinate measuring machines with optical sensors. Berlin: Beuth Verlag, 2021.Search in Google Scholar

23. T. Wilson and C. Sheppard. Theory and Practice of Scanning Optical Microscopy. Academic Press, London, 1st edition, 1984.Search in Google Scholar

Received: 2021-03-03
Accepted: 2021-04-18
Published Online: 2021-05-05
Published in Print: 2021-09-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0036/html
Scroll to top button