Home The investigation of effects of humidity and temperature on torque transducers calibration
Article
Licensed
Unlicensed Requires Authentication

The investigation of effects of humidity and temperature on torque transducers calibration

  • M. Barış Tuğcu

    M. Barış Tuğcu is a mechanical engineer. He works as a laboratory supervisor in the torque laboratory at Turkish Standards Institute.

    and Erol Feyzullahoğlu

    Dr. Erol Feyzullahoğlu is still working as a lecturer in Kocaeli University, Faculty of Engineering, Department of Mechanical Engineering. His fields of study are tribology, composite materials and metrology.

    ORCID logo EMAIL logo
Published/Copyright: January 8, 2021

Abstract

Torque transducer is mechanical device that converts an energy form to another energy form. Torque transducers are calibrated by using machines such as dead weight calibration machines and reference torque transducer systems. Torque transducers are at risk of being affected by various environmental conditions such as temperature and humidity, and deviating from expected measurement results due to strain gauges on them. These factors should be kept under control, if this is not possible, contribution of ambient temperature and air humidity effects on measurement results should be taken into consideration. In this study, measurements were made according to DIN 51309 directive, and effect of other parameter changes on measurement uncertainty, while temperature and humidity kept constant in turn, was investigated. In this study, the goal was to reduce measurement uncertainty of calibration by determining the optimum temperature and humidity values in test environment. As a result of this study, the optimum values are obtained. The lowest measurement uncertainty was found at 21 °C and 50 % RH in this experimental study. In a test environment where optimum environmental conditions are obtained as a result of this study, the torque transducers will have the opportunity to work with maximum precision.

Zusammenfassung

Der Drehmomentaufnehmer ist ein mechanisches Gerät, das ein Typ von Energie in einen anderen Typ von Energie umwandelt. Die Drehmomentaufnehmer werden mithilfe der Eigengewichtskalibrierungsmachinen und Drehmoment-Referenzaufnehmer kalibriert. Die Drehmomentaufnehmer sind gefährdet, von den verschiedenen Umgebungsbedingungen beeinflusst zu werden und von den erwarteten Messergebnisse aufgrund der Dehnungsmessstreifen auf den Drehmomentaufnehmer abzuweichen. Falls möglich, sollen diese Faktoren unter Kontrolle gehalten werden, sonst sollen die Auswirkungen von der Umgebungstemperatur und der Luftfeuchtigkeit auf die Messung berücksichtigt werden. In dieser Studie wurden die Messungen gemäß der DIN 51309-Richtlinie durchgeführt und die Auswirkungen der Änderung der anderen Parameter auf die Messunsicherheit bei konstanter Temperatur und Luftfeuchtigkeit untersucht. Das Ziel dieser Studie war die Verringerung der Messunsicherheit bei Kalibrierung durch die Bestimmung der optimalen Temperatur- und Luftfeuchtigkeitswerten in der Testumgebung. Infolge dieser Studie werden die optimalen Werte erhalten. Die geringste Messunsicherheit wurde bei 21 °C und 50 % relativer Luftfeuchtigkeit gefunden. In einer Testumgebung, in der die Umgebungsbedingungen nach dieser Studie festgestellt werden, haben die Drehmomentaufnehmer die Möglichkeit mit maximaler Genauigkeit zu arbeiten.

About the authors

M. Barış Tuğcu

M. Barış Tuğcu is a mechanical engineer. He works as a laboratory supervisor in the torque laboratory at Turkish Standards Institute.

Erol Feyzullahoğlu

Dr. Erol Feyzullahoğlu is still working as a lecturer in Kocaeli University, Faculty of Engineering, Department of Mechanical Engineering. His fields of study are tribology, composite materials and metrology.

Acknowledgment

The authors would like to thank Turkish Standards Institution (TSE) Torque Calibration Laboratory for the use of the experimental setup.

References

1. L. Klaus, B. Arendacká, M. Kobusch, T. Bruns, Model parameter identification from measurement data for dynamic torque calibration, in: IMEKO 22nd TC3 International Conferences, Republic of South Africa, 2014.Search in Google Scholar

2. A. Kumar, H. Kumar, Stability studies of torque transducers, Measurement Science Review 11(2) (2011) 41–44.10.2478/v10048-011-0008-zSearch in Google Scholar

3. K. M. Khaled, M. Elsherbiny, D. Röske, A. Abuelezz, Humidity and temperature effects on torque transducers, bridge calibration unit and amplifiers, Measurement 74 (2015) 31–42.10.1016/j.measurement.2015.07.007Search in Google Scholar

4. A. Brüge, Simplified measurements of the humidity coefficient of torque transducers in calibration laboratories, ACTA IMEKO 3(2) (2014) 32–38.10.21014/acta_imeko.v3i2.80Search in Google Scholar

5. A. Brüge, Influence of humidity on torque transducers-estimation methods for calibration laboratories, in: XX IMEKO World Congress, Metrology for Green Growth, Republic of Korea, 2012.Search in Google Scholar

6. A. Nishino, K. Ogushi, K. Ueda, Evaluation of actual sensitivity limit in a 10 N·m dead weight torque standard machine and stability of a new 1 N·m torque transducer, Measurement 45 (2012) 2393–2399.10.1016/j.measurement.2011.10.001Search in Google Scholar

7. K. M. Khaled, G. Aggag, A. E. Abuelezz, M. G. Elsherbiny, The influence of misalignment on the uncertainty of vertical torque calibration machine, Mapan – Journal of Metrology Society of India 26(2) (2011) 153–157.10.1007/s12647-011-0015-4Search in Google Scholar

8. N. Saenkhum, T. Sanponpute, The optimization of continuous torque calibration procedure, Measurement 107 (2017) 172–178.10.1016/j.measurement.2016.02.050Search in Google Scholar

9. R. S. Oliveira, S. Winter, L. Herman, T. Fröhlich, R. Theska, A new approach to test torque transducers under dynamic reference regimes, Measurement 58 (2014) 354–362.10.1016/j.measurement.2014.09.020Search in Google Scholar

10. G. Wegener, T. Bruns, Traceability of torque transducers under rotating and dynamic operating conditions, Measurement 42 (2009) 1448–1453.10.1016/j.measurement.2009.08.007Search in Google Scholar

11. G. Wegener, J. Andrae, Measurement uncertainty of torque measurements with rotating torque transducers in power test stands, Measurement 40 (2007) 803–810.10.1016/j.measurement.2006.08.001Search in Google Scholar

12. T. Sanponpute, N. Arksonnarong, Temperature and humidity dependence on stability of torque measuring devices, in: IMEKO 22nd TC, Republic of South Africa, 2014.Search in Google Scholar

13. K. M. Khaled, G. M. Mahmoud, An investigation on the effect of humidity on the zero signal of a strain gauge measuring system, Universitas Scientiarum 23(1) (2018) 129–139.10.11144/Javeriana.SC23-1.aintSearch in Google Scholar

14. DIN Deutsches Institut für Normung e. V., Material testing machines – Calibration of static torque measuring devices, DIN 51309:2013-09, Technical Commitee Drehmoment of Deutscher Kalibrierdienst (2013).Search in Google Scholar

Received: 2020-11-02
Accepted: 2020-12-13
Published Online: 2021-01-08
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2020-0077/html
Scroll to top button