Home Spectroscopic impedance measurement front-end for applications in industrial processes
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic impedance measurement front-end for applications in industrial processes

  • Matthias Flatscher

    Matthias Flatscher received the, B.Sc., Dipl.-Ing. and Dr.techn. degrees in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2012, 2014 and 2020, respectively. He is currently a Hardware Engineer at Samsung SDI Battery Systems. His current interests include electrical measurement technology, circuit design, power electronics, and model-based measurement signal processing.

    ORCID logo EMAIL logo
    , Markus Neumayer

    Markus Neumayer received his Dipl.-Ing. and Dr.techn. degrees in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2008 and 2011, respectively. He is currently a Senior Scientist with the Energy Aware Measurement Systems Group, Institute of Electrical Measurement and Sensor Systems, TU Graz, where he is involved in instrumentation and measurement and signal processing. His current research interests include modeling of sensors and measurement systems, numerical methods, inverse problems, Bayesian methods and statistical signal processing.

    and Thomas Bretterklieber

    Thomas Bretterklieber received the Dipl.-Ing. degree in telematics and the Dr.techn. degree in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2001 and 2008, respectively. He is currently a Senior Scientist with the Energy Aware Measurement Systems Group, Institute of Electrical Measurement and Sensor Systems, TU Graz. His current research interests include the design of dependable measurement systems for harsh environments.

Published/Copyright: January 8, 2021

Abstract

The determination and differentiation of various materials is of great interest in numerous applications. For this purpose, spectroscopic impedance measurement systems are applied. The frequency dependent impedance analysis enables a detailed material investigation and an assessment of its composition e. g. the moisture content. By applying impedance measurement systems in industrial environments conditions as high temperatures, high pressures or vibrations have to be considered. In this paper we present a front-end topology intended to be used for frequency spectroscopic based measurement systems, deployed in industrial environments. The impedance measurement capability of the proposed system is investigated by means of a realized prototype. We present results obtained for measurement frequencies up to 50MHz and address calibration strategies, which improve the robustness. The measurement electronics is also characterized over the environmental temperature range.

Zusammenfassung

Die Bestimmung und Unterscheidung verschiedener Materialien ist in zahlreichen Anwendungen von großem Interesse. Zu diesem Zweck werden spektroskopische Impedanz-Messsysteme verwendet. Die frequenzabhängige Impedanzanalyse ermöglicht eine detaillierte Materialuntersuchung und eine Beurteilung ihrer Zusammensetzung, z. B. des Feuchtegehalts. Die Information über den Feuchtegehalt von verarbeiteten Materialien ist von großem Interesse in industriellen Anwendungen, und dient der Prozessoptimierung. Bei der Anwendung von Impedanz-Messsystemen in industriellen Umgebungen muss das Auftreten von hohen Temperaturen, hohen Drücken oder Vibrationen berücksichtigt werden, welche im industriellen Umfeld üblich sind. In diesem Artikel stellen wir ein Frontend vor, dass für frequenzspektroskopisch basierte Messsysteme im industriellen Umfeld verwendet werden soll. Ein realisierter Prototyp wird auf seine Fähigkeit Impedanzen zu bestimmen untersucht. Wir präsentieren Messergebnisse für Frequenzen bis zu 50MHz und diskutieren Kalibrierstrategien zur Erhöhung der Robustheit. Des Weiteren wird die Auswirkung von Umgebungstemperaturänderungen auf die Messelektronik untersucht.

Award Identifier / Grant number: 6833795

Funding statement: This work is funded by the FFG Project (Bridge 1) TomoFlow under the FFG Project Number 6833795 in cooperation with voestalpine Stahl GmbH.

About the authors

Matthias Flatscher

Matthias Flatscher received the, B.Sc., Dipl.-Ing. and Dr.techn. degrees in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2012, 2014 and 2020, respectively. He is currently a Hardware Engineer at Samsung SDI Battery Systems. His current interests include electrical measurement technology, circuit design, power electronics, and model-based measurement signal processing.

Markus Neumayer

Markus Neumayer received his Dipl.-Ing. and Dr.techn. degrees in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2008 and 2011, respectively. He is currently a Senior Scientist with the Energy Aware Measurement Systems Group, Institute of Electrical Measurement and Sensor Systems, TU Graz, where he is involved in instrumentation and measurement and signal processing. His current research interests include modeling of sensors and measurement systems, numerical methods, inverse problems, Bayesian methods and statistical signal processing.

Thomas Bretterklieber

Thomas Bretterklieber received the Dipl.-Ing. degree in telematics and the Dr.techn. degree in electrical engineering from the Graz University of Technology (TU Graz), Graz, Austria, in 2001 and 2008, respectively. He is currently a Senior Scientist with the Energy Aware Measurement Systems Group, Institute of Electrical Measurement and Sensor Systems, TU Graz. His current research interests include the design of dependable measurement systems for harsh environments.

References

1. L. Callegaro, Electrical Impedance: Principles, Measurement, and Applications, 1st edn. Addison-Wesley, 2016, isbn: 9781138199439.Search in Google Scholar

2. O. Kanoun, Ed., Impedance Spectroscopy. Advanced Applications: Battery Research, Bioimpedance, System Design, 1st edn. Berlin, Boston: De Gruyter, 2018, isbn: 978-3-11-055892-0. [Online]. Available: https://www.degruyter.com/view/product/495056.Search in Google Scholar

3. U. Kaatze, “Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging,” Measurement Science and Technology, vol. 24, no. 1, 012005, 2013. doi: 10.1088/0957-0233/24/1/012005.Search in Google Scholar

4. D. E. Khaled, N. N. Castellano, J. A. Gázquez, A.-J. Perea-Moreno, and F. Manzano-Agugliaro, “Dielectric spectroscopy in biomaterials: Agrophysics,” Materials, vol. 9, no. 5, 310, 2016. doi: 10.3390/ma9050310.Search in Google Scholar PubMed PubMed Central

5. R. E. Dodde, G. H. Kruger, and A. J. Shih, “Design of bioimpedance spectroscopy instrument with compensation techniques for soft tissue characterization,” Journal of Medical Devices, vol. 9, 021001, 2015. doi: 10.1115/1.4029706.Search in Google Scholar PubMed PubMed Central

6. H. Jiang, A. Sun, A. G. Venkatesh, and D. A. Hall, “An audio jack-based electrochemical impedance spectroscopy sensor for point-of-care diagnostics,” IEEE Sensors Journal, vol. 17, no. 3, pp. 589–597, 2017. doi: 10.1109/JSEN.2016.2634530.Search in Google Scholar PubMed PubMed Central

7. I. D. Raistrick, “Application of impedance spectroscopy to materials science,” Annual Review of Materials Science, vol. 16, no. 1, pp. 343–370, 1986. doi: 10.1146/annurev.ms.16.080186.002015.Search in Google Scholar

8. T. Stockinger, U. Müller, F. Padinger, S. Bauer-Gogonea, S. Bauer, and R. Schwodiauer, “Paper-based interdigitated impedance sensor for moisture and vapor measurements,” in: Proc. IEEE SENSORS, Glasgow, UK, 2017, pp. 265–267. doi: 10.1109/ICSENS.2017.8233955.Search in Google Scholar

9. M. Flatscher, M. Neumayer, and T. Bretterklieber, “Maintaining critical infrastructure under cold climate conditions: A versatile sensing and heating concept,” Sensors and Actuators A: Physical, vol. 267, pp. 538–546, 2017. doi: 10.1016/j.sna.2017.09.046.Search in Google Scholar

10. M. Hajimorad, S. Alhloul, H. Mustafa, M. So, and H. Oswal, “Application of polypyrrole-based selective electrodes in electrochemical impedance spectroscopy to determine nitrate concentration,” in: 2016 IEEE SENSORS, 2016, pp. 559–561. doi: 10.1109/ICSENS.2016.7808592.Search in Google Scholar

11. M. Flatscher, M. Neumayer, T. Bretterklieber, and B. Schweighofer, “Measurement of complex dielectric material properties of ice using electrical impedance spectroscopy,” in: Proc. IEEE SENSORS, Orlando, FL, 2016, pp. 406–408. doi: 10.1109/ICSENS.2016.7808533.Search in Google Scholar

12. R. Felsberger, B. Schweighofer, M. Flatscher, M. Rath, M. Grubmüller, and H. Wegleiter, “Low power ice detection with capacitive and impedance spectroscopy-based measurements,” in: 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 2018, pp. 809–813. doi: 10.1109/ISIE.2018.8433765.Search in Google Scholar

13. G. E. Klinzing, F. Rizk, R. Marcus, and L. Leung, Pneumatic Conveying of Solids, 3rd edn. Springer, 2010, isbn: 978-90-481-3608-7. doi: 10.1007/978-90-481-3609-4.Search in Google Scholar

14. T. Rymarczyk and J. Sikora, “Applying industrial tomography to control and optimization flow systems,” Open Physics, vol. 16, no. 1, pp. 332–345, 2018. doi: 10.1515/phys-2018-0046.Search in Google Scholar

15. M. Wang, Industrial Tomography: Systems and Applications, 1st edn. Woodhead Publishing Limited, 2015, isbn: 9781782421184.Search in Google Scholar

16. A. Huang, Z. Cao, S. Sun, F. Lu, and L. Xu, “An agile electrical capacitance tomography system with improved frame rates,” IEEE Sensors Journal, vol. 19, no. 4, pp. 1416–1425, 2019. doi: 10.1109/JSEN.2018.2880999.Search in Google Scholar

17. Z. Cui, H. Wang, Z. Chen, Y. Xu, and W. Yang, “A high-performance digital system for electrical capacitance tomography,” Measurement Science and Technology, vol. 22, no. 5, 055503, 2011. doi: 10.1088/0957-0233/22/5/055503.Search in Google Scholar

18. W. T. Smolik, J. Kryszyn, B. Radzik, M. Stosio, P. Wróblewski, D. Wanta, Ł. Dańko, T. Olszewski, and R. Szabatin, “Single-shot high-voltage circuit for electrical capacitance tomography,” Measurement Science and Technology, vol. 28, no. 2, 025902, 2017. doi: 10.1088/1361-6501/aa50e1.Search in Google Scholar

19. W. T. Smolik, J. Kryszyn, P. Wróblewski, M. Stosio, T. Olszewski, and R. Szabatin, “The hardware architecture of evt4 electrical capacitance tomograph,” in: Proc. 8th World Congress on Industrial Process Tomography, Iguassu Falls, Brazil, 2016, pp. 1–6. [Online]. Available: https://www.isipt.org/world-congress/8/29047.html.Search in Google Scholar

20. J. Kryszyn, D. M. Wanta, and W. T. Smolik, “Gain adjustment for signal-to-noise ratio improvement in electrical capacitance tomography system evt4,” IEEE Sensors Journal, vol. 17, no. 24, pp. 8107–8116, 2017. doi: 10.1109/JSEN.2017.2744985.Search in Google Scholar

21. H. Wegleiter, A. Fuchs, G. Holler, and B. Kortschak, “Development of a displacement current-based sensor for electrical capacitance tomography applications,” Flow Measurement and Instrumentation, vol. 19, no. 5, pp. 241–250, 2008. doi: 10.1016/j.flowmeasinst.2007.11.006.Search in Google Scholar

22. H. Wegleiter, A. Fuchs, G. Holler, and B. Kortschak, “Analysis of hardware concepts for electrical capacitance tomography applications,” in: SENSORS, 2005 IEEE, Irvine, CA, USA, 2005, pp. 688–691. doi: 10.1109/ICSENS.2005.1597792.Search in Google Scholar

23. H. Wegleiter, “Low-z carrier frequency front-end for electrical capacitance tomography applications,” PhD thesis, Graz University of Technology, Jul. 2006.Search in Google Scholar

24. Y. Jiang and M. Soleimani, “Capacitively coupled resistivity imaging for biomaterial and biomedical applications,” IEEE Access, vol. 6, pp. 27069–27079, 2018. doi: 10.1109/ACCESS.2018.2836329.Search in Google Scholar

25. Y. Li and M. Soleimani, “Imaging conductive materials with high frequency electrical capacitance tomography,” Measurement, vol. 46, no. 9, pp. 3355–3361, 2013. doi: 10.1016/j.measurement.2013.05.020.Search in Google Scholar

26. Y. Jiang and M. Soleimani, “Capacitively coupled phase-based dielectric spectroscopy tomography,” Scientific Reports, vol. 8, 17526, 2018. doi: 10.1038/s41598-018-35904-4.Search in Google Scholar PubMed PubMed Central

27. M. Zhang, Y. Li, and M. Soleimani, “Experimental study of complex-valued ect,” in: Proc. 9th World Congress on Industrial Process Tomography, Bath, UK, 2018, pp. 19–24. [Online]. Available: https://www.isipt.org/world-congress/9/29203.html.10.3390/s19173804Search in Google Scholar PubMed PubMed Central

28. Y. D. Jiang and M. Soleimani, “Capacitively coupled electrical impedance tomography for brain imaging,” IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2104–2113, 2019. doi: 10.1109/TMI.2019.2895035.Search in Google Scholar PubMed

29. W. Yang, A. Stott, and M. Beck, “High frequency and high resolution capacitance measuring circuit for process tomography,” IEE Proceedings - Circuits, Devices and Systems, vol. 141, no. 3, pp. 215–219, 1994. doi: 10.1049/ip-cds:19941019.Search in Google Scholar

30. M. Flatscher, M. Neumayer, T. Bretterklieber, and H. Wegleiter, “Front-end circuit modeling for low-z capacitance measurement applications,” in: Proc. IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 2016, pp. 1400–1405. doi: 10.1109/I2MTC.2016.7520574.Search in Google Scholar

31. D. M. Pozar, Microwave Engineering, 4th edn. John Wiley & Sons, Inc., 2011, isbn: 978-0-470-63155-3.Search in Google Scholar

32. M. Flatscher, M. Neumayer, and T. Bretterklieber, “Impedance matched electrical capacitance tomography system: Front-end design and system analysis,” Measurement Science and Technology, vol. 30, no. 10, 104002, 2019. doi: 10.1088/1361-6501/ab25bb.Search in Google Scholar

33. M. Flatscher, M. Neumayer, and T. Bretterklieber, “Impedance matched front-end circuitry for electrical capacitance tomography systems,” in: Proc. 9th World Congress on Industrial Process Tomography, Bath, UK, 2018, pp. 537–545. [Online]. Available: https://www.isipt.org/world-congress/9/29263.html.Search in Google Scholar

34. S. Mühlbacher-Karrer and H. Zangl, “Light weight signal processing for a wireless capacitive sensing platform for mobile applications,” in: Proceedings AMA SENSOR 2015, Nürnberg, Germany, 2015, pp. 190–194. doi: 10.5162/sensor2015/B1.1.Search in Google Scholar

35. M. I. Ikhsanti, R. Bouzida, S. K. Wijaya, I. Rohmadi, I. Muttakin, and W. P. Taruno, “Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue,” AIP Conference Proceedings, vol. 1817, no. 1, 040013, 2017. doi: 10.1063/1.4976798.Search in Google Scholar

36. M. Flatscher, G. Schwarz, M. Neumayer, and T. Bretterklieber, “Capacitance to digital converter based parallelized multi-channel measurement system,” in: Proc. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 2017, pp. 1191–1195. doi: 10.1109/I2MTC.2017.7969853.Search in Google Scholar

37. W. Yang, “Teaching phase-sensitive demodulation for signal conditioning to undergraduate students,” American Journal of Physics, vol. 78, no. 9, pp. 909–915, 2010. doi: 10.1119/1.3428642.Search in Google Scholar

38. H. Wegleiter, A. Fuchs, D. Watzenig, H. Zangl, and G. Steiner, “Phase sensitive demodulation front-end for electrical capacitance tomography applications,” in: Proc. 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2007, pp. 196–201. [Online]. Available: https://www.isipt.org/world-congress/5/535.html.Search in Google Scholar

39. T. Schiltz, B. Beckwith, X. Wang, and D. Stuetzle, “Passive mixers increase gain and decrease noise when compared to active mixers in downconverter applications,” in: Linear Technology Journal of Analog Innovation, vol. 20, 2010, pp. 39–41. [Online]. Available: https://www.analog.com/media/en/technical-documentation/lt-journal-article/LTJournal_V20N3_Oct10.pdf.Search in Google Scholar

40. B. Razavi, “Direct-conversion receivers,” in: RF Microelectronics, 2nd edn. Prentice Hall, 2012, Chap. 4.2.3, pp. 179–199, isbn: 978-0137134731.Search in Google Scholar

41. M. Flatscher, M. Neumayer, and T. Bretterklieber, “Holistic analysis for electrical capacitance tomography front-end electronics,” Journal of Physics: Conference Series, vol. 1065, 092008, 2018. doi: 10.1088/1742-6596/1065/9/092008.Search in Google Scholar

42. H. Zumbahlen, “Rf/if circuits,” in: Linear Circuit Design Handbook, 1st edn. Newnes, 2008, Chap. 4, isbn: 978-0-7506-8703-4. doi: 10.1016/B978-0-7506-8703-4.X0001-6. [Online]. Available: https://www.analog.com/en/education/education-library/linear-circuit-design-handbook.html.Search in Google Scholar

43. K. Gentile and R. Cushing, A Technical Tutorial on Digital Signal Synthesis. Analog Devices, 1999. [Online]. Available: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html.Search in Google Scholar

44. Analog Devices, Ug-364: Evaluating the ad5933 1 msps, 12-bit impedance converter network analyzer. [Online]. Available: https://www.analog.com/media/en/technical-documentation/user-guides/UG-364.pdf.Search in Google Scholar

45. M. Flatscher, M. Neumayer, and T. Bretterklieber, “Field sensor analysis for electrical impedance spectroscopy based ice detection,” in: Proc. IEEE SENSORS, Glasgow, UK, 2017, pp. 477–479. doi: 10.1109/ICSENS.2017.8234035.Search in Google Scholar

46. B. Walker, “Make accurate impedance measurements using a vna,” Tech. Rep., 2019, pp. 1–5. [Online]. Available: https://cdn.baseplatform.io/files/base/ebm/mwrf/document/2019/06/mwrf_11053_21jrevise.pdf.Search in Google Scholar

47. D. Mills, M. G. Jones, and V. K. Agarwal, “Pneumatic conveying of coal and ash,” in: Handbook of Pneumatic Conveying Engineering, 1st edn. CRC Press, 2004, Chap. 10, pp. 289–325, isbn: 0-8247-4790-9. doi: 10.1201/9780203021989.Search in Google Scholar

48. A. Hunt, “Weighing without touching: Applying electrical capacitance tomography to mass flowrate measurement in multiphase flows,” Measurement and Control, vol. 47, no. 1, pp. 19–25, 2014. doi: 10.1177/0020294013517445.Search in Google Scholar

49. T. Suppan, M. Neumayer, T. Bretterlieber, and S. Puttinger, “Volume fraction estimation in pneumatic conveying from tomographic measurements,” in: Proc. 9th World Congress on Industrial Process Tomography, Bath, UK, 2018, pp. 667–675. [Online]. Available: https://www.isipt.org/world-congress/9/29277.html.Search in Google Scholar

50. L. K. Baxter, “Calculating capacitance,” in: Capacitive Sensors: Design and Applications, 1st edn. Wiley-IEEE Press, 1996, Chap. 2.3.1, pp. 14–17, isbn: 9780780353510.10.1109/9780470544228Search in Google Scholar

51. M. Neumayer, M. Flatscher, and T. Bretterklieber, “Coaxial probe for dielectric measurements of aerated pulverized materials,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1402–1411, 2019. doi: 10.1109/TIM.2019.2905710.Search in Google Scholar

52. M. Neumayer, M. Flatscher, and T. Bretterklieber, “Coaxial probe for dielectric measurements of aerated pulverized materials,” in: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 2018, pp. 1545–1550. doi: 10.1109/I2MTC.2018.8409622.Search in Google Scholar

53. E. Messtechnik, “Dielectric constant (dc value) compendium,” Tech. Rep., 2014, p. 25. [Online]. Available: https://portal.endress.com/wa001/dla/5000894/4733/000/00/CP01076F00EN0114.pdf.Search in Google Scholar

54. C. A. Balanis, J. L. Jeffrey, and Y. K. Yoon, “Electrical properties of eastern bituminous coal as a function of frequency, polarization and direction of the electromagnetic wave, and temperature of the sample,” IEEE Transactions on Geoscience Electronics, vol. 16, no. 4, pp. 316–323, 1978. doi: 10.1109/TGE.1978.294591.Search in Google Scholar

55. D. G. Swanson Jr., “Computer aided design of passive components,” in: RF and Microwave Handbook, 2nd edn. CRC Press, 2008, Chap. 29, isbn: 978-0-8493-7218-6.Search in Google Scholar

56. T. Williams, “Chapter 5 - analogue integrated circuits,” in: The Circuit Designer’s Companion, 2nd edn. Oxford: Newnes, 2005, Chap. 5, pp. 148–182, isbn: 978-0-7506-6370-0. doi: 10.1016/B978-075066370-0/50006-7.Search in Google Scholar

57. W. L. Gore & Associates Inc., Gore vents, Accessed: 2020.01.04. [Online]. Available: https://www.gore.com/products/categories/venting.Search in Google Scholar

Received: 2019-09-01
Accepted: 2020-12-19
Published Online: 2021-01-08
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2019-0118/html
Scroll to top button