Home Accelerated mechanical fatigue interconnect testing method for electrical wire bonds
Article
Licensed
Unlicensed Requires Authentication

Accelerated mechanical fatigue interconnect testing method for electrical wire bonds

  • Bernhard Czerny

    Bernhard Czerny studied Physics at the University of Vienna and specialized during his master study on material science and reliability. He continued his research concerning fatigue of interconnects in power electronics in his PhD thesis. In 2014 during his PhD he joined his research group to the TU Wien, CTA and has since been investigating and developing accelerated mechanical fatigue testing systems for electrical interconnects and wire bonds. He is working in the frame of the CD Laboratory “RELAB” on accelerated reliability testing methods. He has published 20 scientific publications and 3 patents in the field of microelectronic reliability.

    EMAIL logo
    and Golta Khatibi

    Golta Khatibi has a BSc in material science and MSc and PhD degrees in technical chemistry and leads a research group and a Christian Doppler Laboratory at the Institute for Chemical Technologies and Analytics of TU Vienna. The main field of her research is studying physical and thermo-mechanical properties of materials and structures in small dimensions with a special focus being investigation of fatigue response and long term reliability of electronic components. She has published about 150 scientific publications and has been project leader and key researcher in several scientific and industrial projects.

Published/Copyright: February 8, 2018

Abstract

Every new development in device performance and packaging design, can drastically affect the reliability of devices due to implementation of new materials and design changes. High performance and high reliability demands in power electronics over several decades and a short time to market development, raise the need for very fast reliability testing methods. In this study a mechanical fatigue testing method is presented for evaluating the interfacial fatigue resistance of heavy Al wire bonded interconnects in high power modules. By separating the concurrent thermal, mechanical and environmental failure mechanisms a selective investigation of the desired failure mode is possible. The setup is designed to reproduce the thermo-mechanical shear stresses by mechanical means, while provoking the same lift-off failure mode as in power cycling tests. With a frequency variable test setup of a few Hz up to several kHz, measurements from 103 up to 108 loading cycles and determining the influence of the testing frequency on the fatigue life are possible. A semi-automated bond wire fatigue tester operating at 60 kHz is presented which is suitable for rapid screening and qualification of a variety of wire bonds at the stages of development and during the production.

Zusammenfassung

Jede Weiterentwicklung zur Verbesserung des Leistungsverhaltens und des Package Designs kann, durch Nutzung neuer Materialien und des Aufbaus die Zuverlässigkeit von Halbleiterkomponenten beeinflussen. In der Leistungselektronik werden hohe Ansprüche an die Funktionalität und die Zuverlässigkeit zum Teil über mehrere Jahrzehnte gestellt. Dies soll innerhalb einer möglichst kurzen Entwicklungszeit erreicht werden, was auch eine schnelle Überprüfung der Zuverlässigkeit der Komponenten erfordert. In dieser Studie wird ein mechanisch beschleunigtes Ermüdungsprüfverfahren zur Bestimmung der Ermüdungsfestigkeit von Aluminium-Dickdrahtverbindungen in Hochleistungsmodulen vorgestellt. Durch Separieren der gleichzeitig auftretenden thermischen, mechanischen und umweltbedingten Fehlermechanismen ist es möglich jeden gewünschten Fehlermode gezielt zu untersuchen. In dem vorgestellten Verfahren werden thermo-mechanische Scherbelastungen mechanisch substituiert um dabei die gleichen Fehlerbilder, zum Beispiel sogenannte Drahtabheber (lift-offs), wie im Power Cycling Test zu erhalten. Der Einfluss der Testfrequenz auf die resultierende Lebensdauer von 103 bis 108 Lastzyklen kann mit diesem Aufbau über einem weiten Bereich, von ein paar Hz bis weit in den kHz-Bereich, bestimmt werden. Vorgestellt wird ein bei 60 kHz arbeitender halbautomatischer Drahtbondtester, welcher sowohl als Schnelltest zur Qualifizierung und dem Screening von im Entwicklungsstadium befindlichen Halbleiterkomponenten als auch produktionsbegleitend eingesetzt werden kann.

Funding statement: The financial support by the Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development is gratefully acknowledged.

About the authors

Bernhard Czerny

Bernhard Czerny studied Physics at the University of Vienna and specialized during his master study on material science and reliability. He continued his research concerning fatigue of interconnects in power electronics in his PhD thesis. In 2014 during his PhD he joined his research group to the TU Wien, CTA and has since been investigating and developing accelerated mechanical fatigue testing systems for electrical interconnects and wire bonds. He is working in the frame of the CD Laboratory “RELAB” on accelerated reliability testing methods. He has published 20 scientific publications and 3 patents in the field of microelectronic reliability.

Golta Khatibi

Golta Khatibi has a BSc in material science and MSc and PhD degrees in technical chemistry and leads a research group and a Christian Doppler Laboratory at the Institute for Chemical Technologies and Analytics of TU Vienna. The main field of her research is studying physical and thermo-mechanical properties of materials and structures in small dimensions with a special focus being investigation of fatigue response and long term reliability of electronic components. She has published about 150 scientific publications and has been project leader and key researcher in several scientific and industrial projects.

References

1. M. Ciappa, “Selected failure mechanisms of modern power modules”, Microelectron. Rel., vol. 42, no. 4/5, 2002, pp. 653–667.10.1016/S0026-2714(02)00042-2Search in Google Scholar

2. S. Ramminger, P. Türkes, G. Wachutka, “Crack mechanism in wire bonding joints”, Microelectronics Reliability, vol. 38, 1998, pp. 1301–1305.10.1016/S0026-2714(98)00141-3Search in Google Scholar

3. R. T. Fitzsimmons and C. E. Miller, “Brittle cracks induced in AlSi wire by the ultrasonic bonding tool”, Proc. 41st Electronic Components & Technology Conference, 1991, pp. 854–858.10.1109/ECTC.1991.163979Search in Google Scholar

4. B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi, M. Thoben, “Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions”, Microelectron. Reliab., vol. 52, 2012, pp. 2353–2357.10.1016/j.microrel.2012.06.081Search in Google Scholar

5. P. A. Agyakwa, M. R. Corfield, L. Yang, J. F. Li, V. M. F. Marques, C. M. Johnson, “Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling”, Microelectron. Rel., vol. 51, Feb. 2011, pp. 406–415.10.1016/j.microrel.2010.08.018Search in Google Scholar

6. T.-Y. Hung, L.-L. Liao, C. Wang, W. Chi, K.-N. Chiang, “Life prediction of high-cycle fatigue in aluminum bonding wires under power cycling test”, IEEE Trans. Device Mater. Rel., vol. 14, 2014, pp. 484–492.10.1109/TDMR.2013.2288703Search in Google Scholar

7. R. Schmidt, U. Scheuermann, “Separating failure modes in power cycling tests”, Proc. Int. Conf. Integr. Power Electron. Syst., 2012, pp. 1–6.Search in Google Scholar

8. M. Junghaenel, R. Schmidt, J. Strobel and U. Scheuermann, “Investigation on Isolated Failure Mechanisms in Active Power Cycle Testing”, Proc. PCIM, 2015.Search in Google Scholar

9. L. Merkle, T. Kaden, M. Sonner, A. Gademann, J. Turki, C. Dresbach, M. Petzold, “Mechanical fatigue properties of heavy aluminium wire bonds for power applications”, Electronics System-Integration Technology Conference ESTC 2nd, 2008, pp. 1363–1368.10.1109/ESTC.2008.4684554Search in Google Scholar

10. G. Khatibi, M. Lederer, B. Weiss, T. Licht, J. Bernardi, H. Danninger, “Accelerated mechanical fatigue testing and lifetime of interconnects in microelectronics”, Procedia Eng., vol. 2, 2010, pp. 511–519.10.1016/j.proeng.2010.03.055Search in Google Scholar

11. B. Czerny, G. Khatibi, “Interface reliability and lifetime of heavy aluminum wire bonds”, Microelectron. Reliab., vol. 58, 2016, pp. 65–72.10.1016/j.microrel.2015.11.028Search in Google Scholar

Received: 2017-11-19
Revised: 2017-12-15
Accepted: 2017-12-27
Published Online: 2018-2-8
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2017-0131/html
Scroll to top button